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The Current Situation
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Need material that chemically binds H2 non-dissociatively



Some Interesting Experimental Observations

Non-dissociative H adsorption on single wall (20 kJ/mol) 
[Dillon et al., Nature (1997)] and multiwall nanotubes (54 
kJ/mol) (Dillon et al., Mat. Res. Soc. Proc.)

Despite numerous recent efforts, however, high weight-
percent hydrogen storage in pure carbon nanotubes and/or 
fullerenes is yet to be demonstrated

The removal of the TM catalysts that were present in the 
original samples is correlated with a reduction in the 
amount of hydrogen being adsorbed (Dillon et al.)
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Scandium & Cp Ring: The Binding MechanismThe Binding Mechanism
Binding EnergiesConfigurations
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one electron transfer 
-> Coulombic

3.76 eV/Sc

CpSc
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HScCp + H2
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two nearly 
degenerate states

1.3 eV/H2
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two states 
energetically distant
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Consecutive H2 Loading to Maximum 6.7 wt%6.7 wt%

Cp[ScH2]

Cp[ScH2(H2)]
0.29 eV

Cp[ScH2] chain

Polymerization    
of ionic molecules

Cp[ScH2(H2)2]
0.28 eV

Cp[ScH2(H2)3]
0.46 eV

Consecutive binding of H2

Cp[ScH2(H2)4]
0.23 eV



Consecutive H2 Binding in All Cp/3d Transition 
Metals

H-H Bond 
Lengths (A)

Sc    4x0.80

Ti    4x0.85

V     3x0.9

Cr    3x0.96
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Maximum H2 Loading in Cp/3d Transition Metals

Dihydrogen

TiV ScCr

Mn Fe Co Ni

MonohydrideDihydride



The 18-Electrons Rule Concerning CpM-nH

nv + NH + 5 = 18

nv: number of valence electrons of the TM
NH : number of the H atoms the TM can bind
5: number of the π electrons in a Cp ring
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Sc has the second largest Eb



From Cp Ring to Larger Carbon Molecules

Transfer the CpTransfer the Cp--metalmetal--H clusters onto a H clusters onto a buckyball buckyball 
to eliminate the dipole induced polymerizationto eliminate the dipole induced polymerization



12-ScH2 Loaded C60: 7.0 wt% Storage Capacity7.0 wt% Storage Capacity

C60[ScH2(H2)4]12C60[ScH2]12

48H2

Sc

H

Very similar binding energies to those of a 
Cp ring for the hydrides and the H2 molecules



C48B12[ScH(H2)5]12C48B12[ScH]12

60H2

12-ScH Loaded C48B12: 8.8 wt% Capacity8.8 wt% Capacity

One more electron is transferred from each Sc to the 
corresponding pentagon, which enhances both the 
Sc-C60 binding and the hydrogen storage capacity



C48B12[ScH(H2)5]12

C60[ScH2(H2)4]12

Three-Dimensional View of the Complexes



Formation Energy of the Organometallic 
Buckyballs
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Reuter and Scheffler, PRB 65, 035406 (2001).



Reversible Storage at Room Temperature

C60[ScH2]12
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The energetics
dictates favorably the 
charging and release 
of H2 at near 1 atm 
and T = 300 K
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Dissociation via 
small hydride cluster 
formation is unlikely



Molecular Dynamic Simulation of Host Stability

T = 1000K
t = 10000 x 0.4 
fs after 4500 
time step 
preheating



H Storage in Light Metal Doped Fullerenes

C36 C36Li C36F C35N

C35B C35LiC35Be

Exceptionally large binding energy for B and Be

0.39 0.65 Unit: eV/H2

0.07 0.07 0.04 0.06

0.14



Dihydrogen Binding to Localized Empty p Orbital

H2 σ state and impurity pz state are strongly affected as a 
result of dihydrogen binding

A more localized Be pz orbital (single peak) gives larger EB



H Storage in Other Organometallic Systems
Metallocarbohedrenes (MetCar) Titanium Carbide Nanocrystals

α-Ti β-Ti γ-Ti C Ti
18.3 19.3 17.4 126.4 85.9

36.7 (kJ/mol-H2)

β-Ti γ-Ti C Ti
15.5 31.8 61.7 137
dihydrogen hydride



Total Capacity @ Full Hydrogen Sorption

MetCar
6.1 total wt%

Ti carbide nanocrystal
7.7 total wt%

H sorption may not depend on 
the TM incorporation details, as 
long as abundant empty d orbitals 
are made available



Experimental Relevance

Zhang & Dai, APL 77, 3051 (2000)

Ti

Metal-coated nanotubes MetCars & nanocrystals

Pilgrim & Duncan, JACS 115, 9724 (1993)



Conclusion

Buckyballs and other carbon-backbone materials 
could be superior for separating TM atoms for H 
storage

Sc, Ti, V have more empty d-orbitals, strong binding 
to the carbon backbones, and nearly ideal binding 
energies with H2

Transition metal (TM) empty orbitals are good 
“containers” for non-dissociated H2

NREL
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Methods: Spin-Polarized First-Principles Calculations

VASP package
G. Kresse et al., http://cms.mpi.univie.ac.at/VASP

Ultrasoft pseudopotential
Generalized gradient approximation (GGA) with PW91 

exchange-correlation functional
Perdew et al., PRB 46, 6671 (1992)

Supercell approach with cell dimension = (25 Å)3

Plane wave basis with cutoff energy = 400 eV

Results are checked using Projector Augmented Wave 
(PAW) method and PBE exchange-correlation

Perdew, Burke, Ernzerhof, PRL 77, 3865 (1996)
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