

Renewable Hydrogen Production

by Photoactive Surfaces

Thomas Klassen

Helmut-Schmidt-University University of the Federal Armed Forces Hamburg

Institute of Materials Research Helmholtz-Zentrum Geesthacht

10th IPHE Education & Outreach Event April 26, 2017, TUHH

> Helmholtz-Zentrum Geesthacht

> Centre for Materials and Coastal Research

Materials Technology

Thomas Klassen

Hydrogen Storage in Metal Hydrides

M. Dornheim, K. Taube, G. Capurso, J. Bellosta, C. Pistidda, A.-L.Chaudhary

from materials and tank design to demonstrator tanks

Photoactive Coatings for Hydrogen Production

(**Thomas Klassen**) M. Eich, M. Schieda

from basic processes at surfaces and interfaces to demonstrator modules

Advanced Functional Coating Technologies

M. Störmer, F. Gärtner M. Villa, H. Gutzmann

from material selection and process development to tailored coating properties

Hydrogen

sustainable and affordable H₂ generation by artificial leaves:

from photocatalysts and tailored surfaces to efficient photo-electrochemical cells

Efficient Photoelectrochemical H₂ Generation

Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal Research

From photo catalysts and tailored semiconductor interfaces to efficient photoelectrochemical cells

HZG in HEMF • M. Schieda (T. Klassen) • HEMF Steering Committee Meeting, Berlin, 2016-02-15.

B. Daneshian and H. Assadi, J. Thermal Spray Techn. 23 (2013) 541

role of surface aspect ratio

Model Surface Structures

Catalyst (WO₃)

Substrate (n-Si)

F-ICP-RIE :120 s + ALD :30 nm H₂SO₄ H₂SO₄+MeOH

60 -

Etch time: 30 s (~330 nm)

Etch time: 60 s (~1.9 µm)

Etch time: 120 s (~3.7 µm)

disruptive technology: supersonic kinetic particle deposition

Centre for Materials and Coastal Research

Kinetic spraying: up to 7x gain in efficiency

- Increasing process gas temperature results in higher photocurrent (better particle-substrate bonding, penetration of native oxide layer).
- Onset of the photocurrent for knifecast sample shifted to anodic potentials: native oxide layer.

Voltammetry (20 mV s⁻¹ in H_2SO_4 0.5 M) under simulated sunlight (AM1.5G) for CGS-TiO₂ electrodes sprayed using N₂ as carrier gas at different temperatures. The results for a knife-cast sample are included for comparison.

Next Generation: Plasmonic Enhancement

Jalas, Weissmüller, Eich, et al.: "Electrochemical tuning of the optical properties of nano-porous gold", NATURE SCIENTIFIC REPORTS 7, 44139; doi: 10.1038/srep44139 (2017) **nature.com** SCIENTIFIC **REPORTS**

Plasmonic Enhancement of Charge Carrier Separation using Metamaterials:

- \Rightarrow Reduction of Recombination Losses
- \Rightarrow Potential for Significantly Enhancing Efficiency of Photoelectrochemical Cells

Hydrogen Technology Centre (HTC); bis 2017; 3,9 Mio €

Centre for Materials and Coastal Research

motivation: comprehensive understanding, scale-up and technology demonstration

- investigations on highly reactive surfaces for photoelectrochemical H₂-production
- hydrides in polymer-scaffolds for H₂-storage

comissioned 2015

scale-up investigations:

- storage materials on 100 kg scale
- photoelectrochemical cells up to 1 m²

Extension Hydrogen Technology Centre (EHTC); 2020-2025; 3,1 Mio € motivation E-HTC (2020-2025): system integration and long term stability research on long-term effects (e.g. corrosion or undesired side reactions) and establishing respective problem solutions

40 Mio one-of-a-kind infrastructure: Helmholtz Energy Materials Foundry (HEMF)

Centre for Materials and Coastal Research

Climate Research: EU-Project IMPACT2C

E Menu

S About the IMPACT2C web-atlas S About the IMPACT2C project S Glossary

Start tutorial A A A Contact

Discover the IMPACT2C web-atlas

Search for...

The IMPACT2C web-atlas summarises in maps and texts the impact of global 2°C warming on the following stories:

Agriculture, Forest and Ecosystems

Water

Coastal Themes

Non-European Hotspots

- the average carbon footprint of a West-European is ≈12 tonnes per year
- global average is ≈4 tonnes per year
- 0.33 to/year necessary in 2055 to stabilize climate!
- 2016 was 3rd year in a row to break temperature record:
 + 1.1 K already reached as compared to pre-industrial time
- a tipping point may soon be reached:
 CO₂ emissions have to peak by 2025
- yes, we can: deploying technologies for climate stabilization

would only cost ≈1% of our income! [Prof. Hermann Held, UniHH, lead author IPCC-Report]

https://www.youtube.com/watch?v=R_pb1G2wIoA

Demonstration Projects

2 Das flüchtige Schlüsselelement

sen Geschwindigkeiten ist Speicherfähigkeit eines Akkus cham Ende. Soll der fossile listoff Erdöl gleichwertig ersetzt rden, gibt es zu Wasserstoff en Alternative. Die technischen bleme scheinen gelöst, ige Hürden aber bleiben. awarisnes

FORTIS SAXONIA 2552 km with equivalent of 1 liter gasoline (= 6000 mpg) H₂ in metal hydride, PEM fuel cell 9th (of 255) in Shell Eco Challenge 2009 50 kg, 600 W, v_{max}= 43 km/h, 269 km/kWh

EcoBee Urban Concept Car H₂ in metal hydride, PEM fuel cell 232 kg, 1 kW, v_{max} = 50 km/h, 30 km/kWh

Helmholtz-Zentrum Geesthacht

FORTIS SARONEA

