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Ammonia Borane vs Ethane 
Any similarities?

Isoelectronic IsomersIsoelectronicIsoelectronic IsomersIsomers

H3N BH3 H3C—CH3

MW 30.81 30.07
Mp[˚C] 114 -172
bonding dative covalent
DHo[kcal/m] 31 90
M[D] 5.2 0
R[A] 1.66 1.53
Wt% H2 19% 19%
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Hydride atoms act as Proton acceptor
WT Klooster, TF Keotzle, PEM Siegbahn, TB Richardson, 
RH Crabtree JACS 1999 121, 6337

Nonclassical Dihydrogen BondNonclassicalNonclassical DihydrogenDihydrogen BondBond

BH --- HN
- +



4

Mechanism of H2 formation?Mechanism of H2 formation?

T (˚C)
NH3BH3 (NH2BH2)n + H2 +  ? <120

(NH2BH2)n (NHBH)n + H2 +     ?   >120

How is the H2 released?
mechanism (solid state)

What is the activation barrier?
can we change it with catalysis, (other) 

Are there other ‘products’?
is the hydrogen clean? (borazine)
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Volatile Products from NH3BH3Volatile Products from NHVolatile Products from NH33BHBH33

NH3BH3 Products + H2 Products + H2

~100 ˚C ~170 ˚C

MS = 79,80, 81

MS = 2

borazine

H2

DSC: 20 – 200 ˚C (5 ˚C/min, Ar 40 ml/min)
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Reaction Pathways to H2Reaction Pathways to HReaction Pathways to H22

NH3BH3 NH2=BH2 + H2
nNH2=BH2 (NH2BH2-NH2BH2)n

intramolecular
Or 

intermolecular
2 NH3BH3 NH3BH2-NH2BH3 + H2

Label with deuterium, isotope studies
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Product Ratio H2 :D2 :HD?Product Ratio HProduct Ratio H2 2 :D:D2 2 :HD?:HD?

Bimolecular
NH3BH3 + ND3BD3 NH3BH2-ND2BD3 + HD
NH3BH3 + NH3BH3 NH3BH2-NH2BD3 + H2
ND3BD3 + ND3BD3 ND3BD2-ND2BD3 + D2

Unimolecular
NH3BH3 + ND3BD3 NH2BH2 + ND2BD2 + H2 + D2

Litmus test:  observation of HD in mass spectrometer
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[H2B(NH3)2][BH4]

NH3BH3

Synthesis of Ammonia borane, Synthesis of Ammonia boraneSynthesis of Ammonia borane, , 

(NH3)l

(B2H6)g(NH3)g

BH3-THF\

NH3BH3 :bubble NH3
thru BH3-THF

NH3BD3 : bubble NH3
thru BD3-THF

ND3BH3 exchange NH 
with D2O

ND3BD3 bubble NH3 thru 
BD3-THF; exchange NH 
with D2O
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Raman SpectroscopyRaman SpectroscopyRaman Spectroscopy

• dissolve NH3BH3in THF
• dissolve ND3BD3in THF
• mix together
• remove solvent
• hope that there 

is no exchange
• Use Raman to 

confirm your 
faith
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No exchange! Only NH3BH3 + ND3BD3No exchange! Only NHNo exchange! Only NH33BHBH33 + ND+ ND33BDBD33
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Bimolecular H2 Formation from NH3BH3Bimolecular HBimolecular H2 2 Formation from NHFormation from NH33BHBH33

HH22
HDHD
DD22

MS of TPD (1:1 NH3BH3 : ND3BD3)MS of TPD (1:1 NHMS of TPD (1:1 NH33BHBH33 : ND: ND33BDBD33))
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Reaction Pathway
NH3BH3 + NH3BH2-NH2BH3

NH3BH2-NH2BH2-NH2BH3 + H2 
NH3BH3 + NH3BH2NH2BH2-NH2BH3

NH3BH2-NH2BH2-NH2BH2-NH2BH3 + H2

Mechanism for polymerization?

Activation barrier?
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•Rates increase with T

•Activated process

•Sigmoidal behavior

•Nucleation and growth

•Thermodynamics

•DHrxn = -5 kcal/mol
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Phase Transformation Kinetics - Avrami Equation 

r (t)

Avrami Equation  XCrystal = 1 - exp (-(kt)n)
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Rate from 2D Growth vs. TemperatureRate from 2D Growth vs. TemperatureRate from 2D Growth vs. Temperature
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Arrhenius treatment of H2 formation ArrheniusArrhenius treatment of Htreatment of H22 formation formation 

Activation barrier for H2 formation from solid state 
ammonia borane is ca. 28 kcal/mol.
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ConclusionsConclusionsConclusions

∆Hrxn =   -5 kcal/mol

Ea =  28 kcal/mol

En
er

gy

AB    PAB + H2

Bimolecular dehydrocoupling
leads to H2

Kinetic Model (nucleation & 
growth)

Rate limiting nucleation and 2-
3D growth
What is the nucleation event?
Can we ‘seed’ the reaction to 
enhance the rate?
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Future Work: Nucleation SeedingFuture Work: Nucleation SeedingFuture Work: Nucleation Seeding
BH3NH3 doped with seeded material
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What is nucleation ‘event’?       
increases rate of H2 release
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1:1 loading

2:1 loading

3:1 loading

Neat AB

100 ˚C
Ramp 1 ˚C /minute

What is optimum loading density to balance reactivity and 
selectivity?

Future work: Increasing AB loading densityFuture work: Increasing AB loading densityFuture work: Increasing AB loading density
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2015 goal (9 & 81)

Materials for H2 StorageMaterials for HMaterials for H22 StorageStorage

NH4BH4 = NHBH + 3H2

NH4BH4 = NB+4H2

NH3BH3 = NHBH+2H2

Ref: A. Züttel, “Materials for hydrogen storage”, materials today, Septemper (2003), pp. 18-27 
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Nucleation SeedingNucleation SeedingNucleation Seeding

BH3NH3 doped with seeded material
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Avrami Equation with Various Values of n 

n =  4
Constant Nucleation + 
3D Growth, sphere
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Xreaction = 1 - exp (-(kt)n)
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Changes in BondingChanges in BondingChanges in Bonding

isolated BH3, NH3 H3N—BH3(g) H3N—BH3(s)

B—H 1.160 1.216 1.15
N—H 1.014 1.014 0.96
∠HBH 120 113.8 102
∠ NHN 107.6 108.7 113
∠ N—H --- H 156
∠B—H --- H 106
NH---HB 2.02
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Enthalpy Calculations (Theory)Enthalpy Calculations (Theory)Enthalpy Calculations (Theory)

 NH3BH3 

     NH2BH2 + H2

CH3CH3 

CH2CH2 + H2 

32.7

-6.5

En
er

gy
 k

ca
l/m

ol
 

Rxn Coordinate

Kinetic verses thermodynamic control
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Reaction Pathways
NH3BH3 + NH3BH2-NH2BH3

NH3BH2-NH2BH2-NH2BH3 + H2 

NH3BH3 + NH3BH2NH2BH2-NH2BH3
NH3BH2-NH2BH2-NH2BH2-NH2BH3 + H2

NH3(BH2NH2BH2-NH2)BH3)n
NH3(BH2NH2BH=NH)nBH3 + H2

(NH3BH2NH2BH=NHBH3)n
NH3(BH=NHBH=NH)nBH3 + H2

NH3(BH=NHBH=NH)nBH3 borazine + H2

≤ 120 ˚C

≥ 120 ˚C

FW = 80.47
bp = 55 ˚C
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Jerry Seidler
Tim Fister
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Jerry Seidler
Tim Fister
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Solid State Approaches to H2 StorageSolid State Approaches to HSolid State Approaches to H22 StorageStorage

Carbon (Single Wall Nano Tubes) 
Reports vary between 0 to 7% wt% H2

Metal Hydrides
Up to 2 hydrogen on  [MH2]
Up to 4 hydrogen on group IIIB element [MH4

-]
NaAlH4 

Air sensitive, water sensitive
‘Chemical Hydrogen Storage’

An attractive alternative?
What is feasible?



30

Hydrogen Storage ChallengeHydrogen Storage ChallengeHydrogen Storage Challenge
FreedomCAR On-board storage for FC vehicles 
Call for “virtual centers” and advanced concepts

Volumetric Density

year 2010 2015

KWh/liter 1.5 2.7

MJ/liter 5.4 9.7

gm/liter 45 81

Gravimetric Density

year 2010 2015

KWh/kg 2 3

MJ/kg 7.2 10.8

gm/kg 60 90
Operational temperature: -20 < ˚C  < 80 

Material with 9 wt% H2 that releases H2 < 80˚ C
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Volumetric Storage Challenges 
(4 Kg H2 = 300 miles)

Volumetric Storage Challenges Volumetric Storage Challenges 
(4 Kg H(4 Kg H22 = 300 miles)= 300 miles)

NaAlH4
69 liter

Compressed H2 (200 bar) 
225 liter

MgH2 32 
liter

4 Kg H4 Kg H22

4 Kg H4 Kg H22

4 Kg H4 Kg H22

liquid H2 (-250˚C) 
56 liter

4 Kg H4 Kg H22
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Height of bar corresponds to mass of elementHeight of bar corresponds to mass of elementHeight of bar corresponds to mass of element
Gravimetric Density Challenges

P.P. Edwards 
Oxford
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Nucleation and Growth  Kinetics    
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• Data described well by a modified Avrami Equation
• Includes three dimensional growth rate and nucleation rate  
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Kinetic AnalysisKinetic AnalysisKinetic Analysis

Integrate DSC curves as a function of temperature to get half-life
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Time Resolved ASW Crystallization Kinetics Studied via FTIR  

Time (s)
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• Crystalline template accelerates and 
alters ASW —> CI phase transition 
kinetics.

Z Dohnálek, RL Ciolli, GA Kimmel, KP Stevenson, RS Smith, &  BD Kay,  JCP 110, 5489 (1999) 
Z Dohnálek, GA Kimmel, RL Ciolli, KP Stevenson, RS Smith, &  BD Kay,  JCP 112, 5932 (2000)
RS Smith, Z Dohnalek, GA Kimmel, G Teeter, P Ayotte, JL Daschbach, and BD Kay, in “Water in Confining Geometries”, 
Chapter 14, (Springer 2003).
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[NH4]+[BH4]-

NH3

B
H H

NH3

+

-
[BH4] H3N BH3

H2N BH2
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N
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N
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H2-(NH2BH)--(NHBH2)-

H
N

HB
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NH

BH

Polyiminoborane
(PIB)

-(NHBH)--(NHB)--(NBH)-

Boron Nitride
(BN)

-H2

-H2

-H2

-H2

(DADB)

(AB)
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NHxBHx Store significant quantity of hydrogen   
(>6 wt%/step)

NHxBHx Store significant quantity of hydrogen   
(>6 wt%/step)

Wt% H2               T (˚C)
NH4BH4 NH3BH3 + H2 6.1 <25
NH3BH3 NH2BH2 + H2 6.5 <120
NH2BH2 NHBH   + H2 6.9 >120
NHBH  BN   + H2 7.3 >500

Two sequential steps > 13 wt% hydrogen
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Reaction Pathways to H2Reaction Pathways to HReaction Pathways to H22

NH3BH3 NH2=BH2 + H2
nNH2=BH2 (NH2BH2-NH2BH2)n

intramolecular
Or 

intermolecular
2 NH3BH3 NH3BH2-NH2BH3 + H2
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NH3BH3(s) (NH2BH2)(s) + H2NHNH33BHBH33(s) (s) (NH(NH22BHBH22)(s) + H)(s) + H22

Thermochim Acta 2000 343, 19. ∆H NH BH products (-5 kcal/m)r 3 3

Release hydrogen from the solid state below the melting point
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Science“Toward a Hydrogen Economy”
Introduction

• Not So Simple

Editorial

• The Hydrogen Solution

News

• The Hydrogen Backlash

Viewpoints

• Sustainable Hydrogen 
Production

• Hybrid Cars Now, Fuel Cell 
Cars Later

Hydrogen makes up 90% of atoms in the universe (2/3 of it tied up in 
water, the balance in living organisms and fossil fuels)

http://www.sciencemag.org/content/vol305/issue5686/cover.shtml
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Stop & RestartStop & RestartStop & Restart

All Neat.AB data + Seeded to 1mW@80C,iso 50 then 70C
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NH3BH3NHNH33BHBH33

Gabriel Merino, Vladimir I. Bakhmutov, and Alberto Vela
J. Phys. Chem. A, 106 (37), 8491 -8494, 2002
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Auto Catalytic Kinetics 

Enzyme kinetics
E + S → [ES] → P
Induction time to build 
up intermediate

Product Catalyzed Reactions
A → B -d[A]/dt = k [A] [B]
Hydrolysis of esters,
acid catalyzed

Phase Transformations
Crystallization, melting, 
precipitation, condensation

P

time

P

time
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H2B(NH3)2 ][BH4]

NH3BH3

Synthesis NH3BH3Synthesis NHSynthesis NH33BHBH33

(NH3)l

(B2H6)g

BH3-THF

(NH3)g BH3 – H –BH2NH3

NH3

[BH4 ]¯[ NH3BH2NH3]+

Diammoniate of diborane
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Avrami Equation with Various Values of n 

n =  4
Constant Nucleation + 
3D Growth, sphere
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Xreaction = 1 - exp (-(kt)n)

• “... it is not possible to determine the nucleation and growth behavior 
from the time dependence of the  transformed volume only,   
as is often attempted.”
RH Doremus, Rates of Phase Transformations
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Favorable Thermodynamics?

Reactants       Products ∆E (kcal/mol)

NH4BH4(s) → NH3BH3(s) + H2 -2.3
NH3BH3(s) → (NH2BH2)n + H2 +8.8
(NH2BH2)n → (NHBH)n + nH2 -3.2
(NHBH)n → BN(s) + nH2 -9.2

AB+ H2 PIB+ H2

PAB+ H2ABO

ABO = NH4BH4
AB = NH3BH3

PAB = (NH2BH2)n

PIB = (NHBH)n
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Kinetic ComparisonKinetic ComparisonKinetic Comparison
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Hydrogen Research NeedsHydrogen Research NeedsHydrogen Research Needs

National Academy

New ideas, new materials
One of the Biggest Challenge:  on-Board Storage
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