Mechanistic Studies of Hydrogen Formation from Amine-borane (NH₃BH₃) Complexes.

R. Scott Smith, Bruce D. Kay, Liyu Li, Nancy Hess, Maciej Gutowski, Benjamin Schmid & Tom Autrey

Pacific Northwest National Laboratory

Operated by Battelle for the U.S. Department of Energy

Ammonia Borane vs Ethane Any similarities?

Isoelectronic Isomers

	$H_3N \rightarrow BH_3$	H ₃ C—CH ₃	
MW	30.81	30.07	
Mp[°C]	114	-172	
bonding	dative	covalent	
DH^o[kcal/m]	31	90	
M[D]	5.2	0	
R[A]	1.66	1.53	
Wt% H2	19%	19%	

Nonclassical Dihydrogen Bond

Hydride atoms act as Proton acceptor

WT Klooster, TF Keotzle, PEM Siegbahn, TB Richardson, RH Crabtree JACS 1999 121, 6337 Pacific Northwest National Laboratory U.S. Department of Energy 3

Mechanism of H₂ formation?

$$NH_{3}BH_{3} \rightarrow (NH_{2}BH_{2})_{n} + H_{2} + ?$$

$$(NH_{2}BH_{2})_{n} \rightarrow (NHBH)_{n} + H_{2} + ?$$

$$>120$$

How is the H₂ released? mechanism (*solid state*) What is the activation barrier? can we change it with catalysis, (*other*) Are there other 'products'? is the hydrogen clean? (*borazine*) $\langle 0 \rangle$

Volatile Products from NH₃BH₃

$NH_3BH_3 \rightarrow Products + H_2 \rightarrow Products + H_2$

Reaction Pathways to H₂

$NH_{3}BH_{3} \rightarrow NH_{2}=BH_{2} + H_{2}$ $nNH_{2}=BH_{2} \rightarrow (NH_{2}BH_{2}-NH_{2}BH_{2})_{n}$ *intramolecular* Or *intermolecular* $2 NH_{3}BH_{3} \rightarrow NH_{3}BH_{2}-NH_{2}BH_{3} + H_{2}$

Label with deuterium, isotope studies

Product Ratio H₂:D₂:HD?

Bimolecular $NH_3BH_3 + ND_3BD_3 \rightarrow NH_3BH_2 - ND_2BD_3 + HD$ $NH_3BH_3 + NH_3BH_3 \rightarrow NH_3BH_2 - NH_2BD_3 + H_2$ $ND_3BD_3 + ND_3BD_3 \rightarrow ND_3BD_2 - ND_2BD_3 + D_2$

Unimolecular NH₃BH₃ + ND₃BD₃ \rightarrow NH₂BH₂ + ND₂BD₂ + H₂ + D₂

Litmus test: observation of HD in mass spectrometer

Synthesis of Ammonia borane

Raman Spectroscopy

No exchange! Only NH₃BH₃ + ND₃BD₃

MS of TPD (1:1 $NH_3BH_3 : ND_3BD_3$)

Reaction Pathway

$\begin{array}{l} \mathsf{NH}_3\mathsf{BH}_3 + \mathsf{NH}_3\mathsf{BH}_2\mathsf{-}\mathsf{NH}_2\mathsf{BH}_3 \\ \xrightarrow{} \mathsf{NH}_3\mathsf{BH}_2\mathsf{-}\mathsf{NH}_2\mathsf{BH}_2\mathsf{-}\mathsf{NH}_2\mathsf{BH}_3 + \mathsf{H}_2 \\ \mathsf{NH}_3\mathsf{BH}_3 + \mathsf{NH}_3\mathsf{BH}_2\mathsf{NH}_2\mathsf{BH}_2\mathsf{-}\mathsf{NH}_2\mathsf{BH}_3 \\ \xrightarrow{} \mathsf{NH}_3\mathsf{BH}_2\mathsf{-}\mathsf{NH}_2\mathsf{BH}_2\mathsf{-}\mathsf{NH}_2\mathsf{BH}_2\mathsf{-}\mathsf{NH}_2\mathsf{BH}_3 + \mathsf{H}_2 \end{array}$

Mechanism for polymerization? Activation barrier?

$NH_3BH_3(s) \rightarrow (NH_2BH_2)(s) + H_2$

Phase Transformation Kinetics - Avrami Equation

Avrami Equation $X_{Crystal} = 1 - exp(-(kt)^n)$

Rate from 2D Growth vs. Temperature

rgy 15

Arrhenius treatment of H₂ formation

Conclusions

- Bimolecular dehydrocoupling leads to H₂
- Kinetic Model (nucleation & growth)
 - Rate limiting nucleation and 2-3D growth
 - What is the nucleation event?
 - Can we 'seed' the reaction to enhance the rate?

Acknowledgements

FY04 NanoScience & Technology Initiative

J Linehan, W Shaw NMR
Y Shin, S Li SBA-15
C Wang TEM
M Stender Synthesis
D McCready, XRD
D Matson Synthesis
J Fulton, Y Chen XAFS
S Addleman & Fryxell Mesos
C Yonker Hi Pressure NMR
J Seidler, T Fister, Xray Raman

N Heise, L Daemon, C Brown Neutron Scattering
R Willford Modeling
V Visitianathan, J Holladay, Euclide
G Whyatt Systems Eng
K Feterson Hi Pressure
J Franz, D Camaioni, D Schubert, L Sneddon, T Baker, D Thom Chemistry

Future Work: Nucleation Seeding

What is nucleation 'event'? increases rate of H₂ release Northwest Mational Laboratory

partment of Energy 19

Future work: Increasing AB loading density

What is optimum loading density to balance reactivity and selectivity?

Materials for H₂ Storage

Ref: A. Züttel, "Materials for hydrogen storage", materials today, Septemper (2003), pp. 18-27

Nucleation Seeding

Avrami Equation with Various Values of n

Changes in Bonding

isolated BH₃, NH₃ $H_3N - BH_3(g) \quad H_3N - BH_3(s)$

B—H	1.160	1.216	1.15	
N—H	1.014	1.014	0.96	
∠HBH	120	113.8	102	
\angle NHN	107.6	108.7	113	
∠ N—H H			156	
∠B—H H			106	

NH----HB

Enthalpy Calculations (Theory)

Kinetic verses thermodynamic control

Pacific Northwest National Laboratory U.S. Department of Energy 26

FW = 80.47

NH₃(BH=NHBH=NH)_nBH₃ → borazine + H₂ bp = 55 °C

 $(NH_3BH_2NH_2BH=NHBH_3)_n$ $\rightarrow NH_3(BH=NHBH=NH)_nBH_3 + H_2$

 $NH_{3}(BH_{2}NH_{2}BH_{2}-NH_{2})BH_{3})_{n}$ $\rightarrow NH_{3}(BH_{2}NH_{2}BH=NH)_{n}BH_{3} + H_{2}$

 \rightarrow NH₃BH₂-NH₂BH₂-NH₂BH₂-NH₂BH₃ + H₂

≥ 120 °C

<120 °C

 $NH_3BH_3 + NH_3BH_2NH_2BH_2-NH_2BH_3$

 $NH_{3}BH_{3} + NH_{3}BH_{2}-NH_{2}BH_{3}$ $\rightarrow NH_{3}BH_{2}-NH_{2}BH_{2}-NH_{2}BH_{3} + H_{2}$

Reaction Pathways

Solid State Approaches to H₂ Storage

- Carbon (Single Wall Nano Tubes)
 - Reports vary between 0 to 7% wt% H₂
- Metal Hydrides
 - Up to 2 hydrogen on [MH₂]
 - Up to 4 hydrogen on group IIIB element [MH₄]
 - NaAlH₄
 - Air sensitive, water sensitive
- 'Chemical Hydrogen Storage'
 - An attractive alternative?
 - What is feasible?

Hydrogen Storage Challenge

FreedomCAR On-board storage for FC vehicles Call for "virtual centers" and advanced concepts

Volumetric Density		Gravimetric Density			
year	2010	2015	year	2010	2015
KWh/liter	1.5	2.7	KWh/kg	2	3
MJ/liter	5.4	9.7	MJ/kg	7.2	10.8
gm/liter	45	81	gm/kg	60	90

Operational temperature: -20 < °C < 80

Material with 9 wt% H_2 that releases $H_2 < 80^{\circ} C$

Volumetric Storage Challenges (4 Kg H₂ = 300 miles)

Gravimetric Density Challenges

Height of bar corresponds to mass of element

The Periodic Table of the Chemical Elements. The mass of each element is indicated by its elevation above the plane.

March 2004

Nucleation and Growth Kinetics

- Data described well by a modified Avrami Equation
- Includes three dimensional growth rate and nucleation rate

Kinetic Analysis

Integrate DSC curves as a function of temperature to get half-life

Time Resolved ASW Crystallization Kinetics Studied via FTIR

Z Dohnálek, RL Ciolli, GA Kimmel, KP Stevenson, RS Smith, & BD Kay, JCP 110, 5489 (1999) Z Dohnálek, GA Kimmel, RL Ciolli, KP Stevenson, RS Smith, & BD Kay, JCP 112, 5932 (2000) *ific Northwest National Laboratory* RS Smith, Z Dohnalek, GA Kimmel, G Teeter, P Ayotte, JL Daschbach, and BD Kay, in "Water in Confining/Geometrics" of Energy 35 Chapter 14, (Springer 2003).

NH_xBH_x Store significant quantity of hydrogen (>6 wt%/step)

Two sequential steps > 13 wt% hydrogen

Reaction Pathways to H₂

 $\begin{array}{l} \mathsf{NH}_3\mathsf{BH}_3 \twoheadrightarrow \mathsf{NH}_2 = \mathsf{BH}_2 + \mathsf{H}_2 \\ \mathsf{nNH}_2 = \mathsf{BH}_2 \twoheadrightarrow (\mathsf{NH}_2\mathsf{BH}_2 - \mathsf{NH}_2\mathsf{BH}_2)_{\mathsf{n}} \\ intramolecular \\ Or \\ intermolecular \\ \mathsf{2} \ \mathsf{NH}_3\mathsf{BH}_3 \twoheadrightarrow \mathsf{NH}_3\mathsf{BH}_2 - \mathsf{NH}_2\mathsf{BH}_3 + \mathsf{H}_2 \end{array}$

$NH_3BH_3(s) \rightarrow (NH_2BH_2)(s) + H_2$

G. Wolf et al. / Thermochimica Acta 343 (2000) 19-25

Thermochim Acta 2000 343, 19. ∆H_r NH₃BH₃→products (-5 kcal/m)

Release hydrogen from the solid state below the melting point

Science"Toward a Hydrogen Economy"

Introduction

Not So Simple

Editorial

- The Hydrogen Solution News
- The Hydrogen Backlash

Viewpoints

- Sustainable Hydrogen Production
- Hybrid Cars Now, Fuel Cell
 Cars Later

Hydrogen makes up 90% of atoms in the universe (2/3 of it tied up in water, the balance in living organisms and fossil fuels)

Stop & Restart

Gabriel Merino, Vladimir I. Bakhmutov, and Alberto Vela J. Phys. Chem. A, 106 (37), 8491 -8494, 2002

Auto Catalytic Kinetics

Enzyme kinetics

 $E + S \rightarrow [ES] \rightarrow P$ Induction time to build up intermediate

$\begin{array}{ll} \mbox{Product Catalyzed Reactions} \\ \mbox{A} \rightarrow \mbox{B} & -d[A]/dt = k \ensuremath{\left[A\right]}\ensuremath{\left[B\right]} \\ \mbox{Hydrolysis of esters,} \\ \mbox{acid catalyzed} \end{array}$

Phase Transformations Crystallization, melting, precipitation, condensation

U.S. Department of Energy 44

Avrami Equation with Various Values of n

"... it is not possible to determine the nucleation and growth behavior from the time dependence of the transformed volume only, as is often attempted." RH Doremus, Rates of Phase Transformations

Favorable Thermodynamics?

Kinetic Comparison

Hydrogen Research Needs

APS PANEL ON PUBLIC AFFAIRS

Issue

President Bash has proposed a \$1.2 billion Hydrogen Initiative that has a goal of developing a hydrogenfieled car and supporting infrastructure by the year 2020.

Recommendations

Major scientific breakthroughs are required for the Hydrogen Initiative to succeed. Basic science must have greater emphasis both in planning and in the research program. The Hydrogen Technical Advisory Committee should include members who are deeply familiar with the core basic science problems. "Bridge" technologies should be given greater attention. And, the Hydrogen Initiative should not displace research into promising energy efficiency and renewable energy areas. Detailed Recommendations: p 11, 14

The APS

The American Physical Society is the mation's primary argustization of research physicalis with 43,000 members in industry, universities, and mational laboratories.

APS Discussion Paper

The AFS occasionally produces discussion papers on topics currently detained in Compares in order to inform the debate with the perspectives of phydicits working in the relevant inset meta. The papers are extracted by the AFS Parel on Public Affairs but have as been associated bythe AFS Causel.

March 2004_____

THE HYDROGEN I

Current technology is prom More emphasis needed on s science problems.

Executive

in 2003, President Bush assourced a rm intended to coduce the ration's dependen of hydrogen fiel and a hydrogen-faeled competitive use of hydrogen in commerci

Currently, the US hydrogen industry pr year. Several hydrogen-facing stations several models of hydrogen-facing can h

However, none of the current technolic contenier. The most promising hydroger 10 to 100 improvements in cost or pp Further, hydrogen current simply be offer must be produced. Yet, as the Scoretary production methods are four times men material exists to construct a hydroger benchancies. A new material must be do

These are enormous performance gaps, technologies are not sufficient to close a to succeed, major scientific breakthrough

Basic science mut have gentre enghan program. The Hydrogen Tochninal members of the basic research communscience problems. Further, given the n problems involved, genicopia-investicomplemented with the creation of an Research Castess that focus on the se production, stronge and use.

In the event that the timeline for hydroge be greater used for technologies that so current fluxif-fiel ecocory and any fait focus on basic science and engineering serve as a smullel hedge and at the a technologies that show clear short-tern hritative must not displace research renewable energy areas.

Contact: Prancis Sinkey, Associate Director of Public Affhire, American Pt

One of the Biggest Challenge: *on-Board Storage* New ideas, new materials Pacific Northwest National Laboratory

U.S. Department of Energy 48