

# Development of Mg-SWNT system for hydrogen storage

H.-M. Cheng

#### Shenyang National Laboratory for Materials Science Institute of Metal Research, Chinese Academy of Sciences Shenyang, 110016 China



June, 2005 at IPHE Conference in Lucca, Italy



### Outline

Hydrogen storage in CNTs

Hydrogen storage in Mg-CNT system

Concluding remarks





#### 1: Hydrogen Storage in Carbon Nanotubes





# Summary of reported experimental results for hydrogen storage in CNTs/CNFs since 2002.



| Sample                 | Synthesis<br>technique                                    | Diameter<br>(nm) | Purity     | Pre-treatment                                                             | $\begin{array}{c} Surface \\ area(m^2g^{-1}) \end{array}$ | Storage<br>method | Pressure and<br>temperature       | Result<br>(wt%)      | Reference<br>nos |
|------------------------|-----------------------------------------------------------|------------------|------------|---------------------------------------------------------------------------|-----------------------------------------------------------|-------------------|-----------------------------------|----------------------|------------------|
| SWNT                   | HiPco                                                     | _                | Purified   | 400°C vacuum                                                              | _                                                         | V                 | 8 MPa, RT                         | 0.43 (A)             | [31]             |
| MWNT                   | CVD                                                       | 20-30            | Punfied    | HF washing and                                                            | 33.7                                                      | V                 | 100 bar, 298 K                    | 3.3 (A)              | [49]             |
| SWNT                   | HiPco                                                     | _                | Unpurified | air oxidation<br>CO <sub>2</sub> oxidation<br>and 973 K under<br>H2 or He | _                                                         | G                 | 48 bar, RT                        | 1.2 (A)              | [51]             |
| MWNT                   | CVD                                                       |                  | _          | HNO <sub>2</sub> washing                                                  | _                                                         | v                 | 145 bar, 300 K                    | 3.7 (A)              | [33]             |
| MWNT                   | CVD                                                       | 10-60            | _          | 2200°C Ar                                                                 | _                                                         | v                 | 10 MPa, RT                        | 3.98(A)              | [43]             |
| MWNT                   | CVD                                                       | 53               |            | 1037 K Ar                                                                 | 25                                                        | v                 | 13.59 MPa, RT                     | 4.6 (A)              | [44]             |
|                        |                                                           |                  |            |                                                                           |                                                           |                   | ,                                 | 3.2 (Ŕ)              |                  |
| MWNT                   | CVD                                                       | 30               | —          | Acid washing,<br>CO <sub>2</sub> oxidation,<br>and compression            | 137                                                       | v                 | 10 MPa, 77 K                      | 0.45 (A)             | [58]             |
| MWNT<br>(tip opened)   | CVD (anodized<br>Al <sub>2</sub> O <sub>3</sub> template) | 40               | _          | 900°C Ar                                                                  | 840                                                       | v                 | 10 MPa,<br>77 K and<br>10 MPa, RT | 6.46 (A)<br>1.12 (A) | [34]             |
| CNF                    | CVD                                                       |                  | _          | 700°C H2 in situ                                                          | 242                                                       | v                 | 69 bar. RT                        | 3.8 (R)              | [45]             |
| SWNT                   | Arc discharge                                             | 1.2-1.5          | —          | Activated<br>with KOH                                                     | 1433                                                      | v                 | 1 bar, RT<br>1 bar, 77 K          | 0.02 (Å)<br>1.58 (Å) | [57]             |
| Mixed SWNT<br>and DWNT | CVD                                                       | —                | Unpurified | 250°C vacuum                                                              | 881                                                       | v                 | 10 MPa, RT                        | 0.51 (A)             | [54]             |
| MWNT                   | CVD                                                       | 10               | Unpurified | _                                                                         | —                                                         | TDS               | Desorbed<br>up to 2000°C          | 8.6 (R)              | [38]             |
| SWNT                   | Laser ablation                                            | 1.4              | Punified   | NaOH treatment                                                            |                                                           | v                 | 9 MPa, RT                         | 0.3 (A)              | [66]             |
| SWNT                   | HiPco                                                     | _                | Punified   | HF washing,                                                               | 797                                                       | G                 | 1 bar, 295 K,                     | 0.2 (A)              | [35]             |
|                        |                                                           |                  |            | heated under Ar                                                           |                                                           |                   | 1 bar, 77 K                       | 1.7 (A)              |                  |
| SWNT                   | Arc discharge                                             | 1.2-1.5          | Unpurified | Air oxidation,<br>H <sub>2</sub> reduction                                | 728                                                       | v                 | 300 Torr, 77 K                    | 3.0 (A)              | [55]             |
| SWNT                   | HiPco                                                     | _                | Purified   | Acid washing                                                              | 710                                                       | V                 | 3.5 MPa, 303 K                    | 0.25(A)              | [91]             |
| SWNT                   | HiPco                                                     | _                | 90 wt%     | Vacuum degassed                                                           | 800                                                       | V                 | 300 atm, 294 K                    | 0.91 (A)             | [60]             |
| SWNT                   | Arc discharge                                             | 1.2              | 75 wt%     | Air oxidation,<br>400°C vacuum                                            | —                                                         | v                 | 25 bar, 77 K                      | 2.4 (A)              | [47]             |
| MWNT                   | CVD                                                       | 25-30            | Purified   | Ball milled                                                               | _                                                         | V                 | 9 MPa, RT                         | 0.69 (A)             | [53]             |
| SWNT                   | Arc discharge                                             | 0.7 - 1.2        | 12-15 wt%  | 873 K degassed                                                            | 230                                                       | TDS               | 2 MPa                             | 0.60 (R)             | [36]             |
| MWNT                   | CVD                                                       | 60-100           | _          | 400°C vacuum                                                              | —                                                         | v                 | 10 MPa, RT                        | 5.0                  | [50]             |
| MWNT                   | CVD                                                       | 10-30            | 85 wt%     | NaOH washing<br>400°C vacuum                                              | —                                                         | v                 | 10.61 MPa, RT                     | 0.272 (R)            | [52]             |
| CNF                    | CVD                                                       | 250              | _          | 150°C vacuum                                                              | _                                                         | v                 | 80 atm, RT                        | 17 (A)               | [48]             |

Notes: RT, room temperature; V, volumetric; G, gravimetric; TDS, thermal desorption spectrum; A, adsorption; R, release.



# Summary of reported theoretical results for hydrogen storage in CNTs/CNFs since 2002

| Sample                    | Diameter (nm) or $(n, m)$ indices   | Intertube<br>distance (nm) | Method                         | Temperature<br>and pressure | Storage<br>capacity (wt%)           | Reference<br>nos    |
|---------------------------|-------------------------------------|----------------------------|--------------------------------|-----------------------------|-------------------------------------|---------------------|
| CNT and CNF               |                                     | _                          | GCMC                           | 293 K, 10 MPa               | 0.6                                 | [86]                |
| SWNT                      | 2.719                               | Isolated                   | Classical potential<br>and DFT | 77 K, 4 MPa                 | 9.5                                 | [76]                |
| SWNT                      | 2.719                               | Isolated                   | Classical potential<br>and DFT | 300 K, 20 MPa               | 1.0                                 | [76]                |
| SWNT                      | 1.17                                | 0.7                        | Tight-binding<br>MD and GCMC   | 293 K, 10 MPa               | 3.4                                 | [ <mark>89</mark> ] |
| Li-doped<br>pillared SWNT | (10, 10) and<br>1 : 3 Li : C doping | 0.9                        | Developed DFT<br>and GCMC      | 50 bar RT                   | 6.0 wt%,<br>61.7 kg m <sup>−3</sup> | [87]                |



#### Some perspectives obtained



- The wide range of discrepancy has not been observed for any other hydrogen storage materials.
- Great efforts are made to identify influencing factors:
  - measurement methodology
    - Volumetric, gravimetric and thermal desorption spectrum (TDS) methods are most commonly used
  - synthesis techniques and post-treatment
    - Some synergitic effect between CNTs and nanosized metal hydrides
    - Acid or alkali treatment does not routinely improve the capacity
    - A suitable posttreatment or activation process may be beneficial
  - structural characteristics
    - SWNTs with larger diameter and MWNTs with worse structural perfection seem to be preferable
  - surface and pore characteristics
    - Pore structures of CNTs unique to ACs. Higher capacity observed
    - No perfect consistency in relationship between H capacity and SSA of CNTs
    - **Adsorption sites** 
      - Four basic sites: inner cavity, interstitial channel, cylinder-shaped outer surface and groove site

Measurement pressure

• Below 6MPa, almost no hydrogen can be stored



#### SWNTs by sulfur-assisted arc discharge (average diameter: ~1.7 nm)



#### **39.5g; raw Mater.: Graphite**

#### 21.5g; raw Mater.: CNFs





## **Purification of SWNTs**











After purification (~4 wt% catalyst metal residue), part of the SWNTs were cut short and more defects are induced.



# Experimental procedure of volumetric measurement method

- Calibration of the setup
  - AC (Maxsorb): 0.6-0.8 wt% at 13 MPa and RT
  - LaNi<sub>5</sub>: 1.34-1.44 wt% at 13 MPa and RT
- Heating the sample cell and vacuum degassing at 473 K
- Introduction of high purity H<sub>2</sub> (99.999~99.9999% purified by metal hydride)
- Measurements of pressure change
- Release of the adsorbed H<sub>2</sub>





#### Influence of purification and annealing on H-storage performance of SWNTs

| Samples Anneo<br>T (° o |     | Meas. T<br>(°C) | P <sub>H2</sub><br>(MPa) | Sam.Weight<br>(mg) | H-capacity<br>(wt.%) |  |
|-------------------------|-----|-----------------|--------------------------|--------------------|----------------------|--|
| as-<br>prepared         | 900 | 23              | 12.1                     | 190                | 0.50                 |  |
| purified                | 500 | 24.5            | 12.1                     | 214                | 1.05                 |  |
| purified                | 600 | 24.5            | 12.4                     | 176                | 0.99                 |  |
| Purified                | 700 | 25.7            | 11.8                     | 190                | 1.44                 |  |
| Purified                | 900 | 19              | 12.2                     | 206                | 1.65                 |  |



#### Activation of MWNTs: HRTEM observation



KOH-activated (a, b, c); CO<sub>2</sub>-activated (d); air-activated MWNTs (e)



#### Hydrogen storage in the activated MWNTs (~295 K, 13 MPa)

| MWNTs                      | S <sub>BET</sub><br>(m²/g) | V <sub>micro.</sub><br>(cm <sup>3</sup> /g) | V <sub>meso.</sub><br>(cm <sup>3</sup> /g) | H-Capacity<br>(wt.%) |  |
|----------------------------|----------------------------|---------------------------------------------|--------------------------------------------|----------------------|--|
| As-prepared                | 65.7                       | 0.009                                       | 0.118                                      | 0.24                 |  |
| Air-activated              | 270.4                      | 0.056                                       | 0.555                                      | 0.90                 |  |
| CO <sub>2</sub> -activated | 429.1                      | 0.102                                       | 0.582                                      | 1.01                 |  |
| KOH-activated              | 785.2                      | 0.165                                       | 1.044                                      | 1.18                 |  |



Activation is beneficial for hydrogen storage



#### 2: Mg/SWNTs composite for hydrogen storage



#### Synergetic advantage







## Effect of graphite addition

• Hydrogen storage performance of Mg could be improved more or less by adding graphite.

H. Imamura, et al, J. Alloys Comp. 293-295 (1999) 564-568.
H. Imamura, et al, Acta Mater. 51 (2003) 6407-6414.
J.-L. Bobet, et al, J. Alloys Comp. 366(2004)298-302.
S. Bouaricha, et al, J. Mater. Res., 16(10)2893-2905

• Graphite has little influence on the desorption properties of MgH2.





# Addition of various carbon/non-carbon materials



- MgH<sub>2</sub> was mechanically ground for 10h with various additives below :
  - Carbon materials: purified SWNTs, activated carbon (Maxsorb), carbon black, graphite, and fullerene
  - Non-carbon materials: boron nitride nanotubes, and asbestos
- For the sake of comparison, MgH<sub>2</sub> also milled without additive for 10h

### **Dispersion of carbon nanotubes**





MgKa1,, 25



SEM images and element mapping of the composite MgH<sub>2</sub>-5wt.% purified SWNTs milled for 10h

(referred as MgH<sub>2</sub>-5ps-10h, similar hereinafter)

Dispersion seems to be quite uniform.

### Addition of various carbon/noncarbon materials



Hydrogen absorption profiles of the composite (a) MgH<sub>2</sub>-5ps, (b) MgH<sub>2</sub>-5CB, (c)  $MgH_2$ -5AC, (d)  $MgH_{2}-5C_{60}$ , (e) MgH<sub>2</sub>-5G, (f) MgH<sub>2</sub>-5BNNTs, (g) MgH<sub>2</sub>-5Asbestos and (h) MgH<sub>2</sub> (milled for 10h, respectively) at 473K with an initial hydrogen pressure of about 2.0 MPa.



SWNTs are the most effective.



#### Enhanced de-/hydriding performance upon adding SWNTs (purified)



RH

DH



 $-MgH_2+5wt.\% SWNT, H_2, 10h; -MgH_2, H_2, 10h$ 

Both hydrogen capacity and hydrogenation kinetics of MgH<sub>2</sub> are markedly improved upon addition of SWNTs, especially at moderate temperature.

### **Dependence** of H-storage performance of MgH<sub>2</sub>/SWNTs composite on SWNT content





Hydrogen absorption profiles of the composite MgH2*x* wt.% SWNTs ball milled for 10 h at 573 K with an initial hydrogen pressure of about 2 MPa.



# Dependence of H-storage performance of MgH<sub>2</sub>/SWNTs composite on milling time





#### Addition of pre-milled purified SWNTs

**Purified SWNTs** 

**Purified SWNTs milled for 30min** 

MgH<sub>2</sub>+

**Purified SWNTs milled for 2h** 

**Purified SWNTs milled for 20h** 

+Milled for 10h

Objective: To investigate the function of SWNTs.



#### Addition of pre-milled purified SWNTs







Hydrogen absorption profiles of the composites  $MgH_2$ -5ps, MgH<sub>2</sub>-5(ps-30min), MgH<sub>2</sub>-5(ps-2h) and MgH<sub>2</sub>-5(ps-20h) (milled for 10h, respectively) at (a) 573K and (b) 423K with an initial hydrogen pressure of about 2MPa.



#### **Addition of as-prepared SWNTs**

# MgH<sub>2</sub>-purified SWNTs MgH<sub>2</sub>-Fe,Co,Ni

#### MgH<sub>2</sub>-5wt.% as-prepared SWNTs

#### **Positive Effect?**





#### **Addition of as-prepared SWNTs**





Hydrogen absorption profiles of the composite MgH<sub>2</sub>-5ap-10h at the temperature range of 373K to 573K under 2.0 MPa hydrogen pressure

## Comparison of hydrogen desorption of Mg/SWNT composites





Hydrogen desorption profiles of the composite *MgH*<sub>2</sub>-5*ps*, *MgH*<sub>2</sub>-5*ap*, and *MgH*<sub>2</sub> at various temperature from 553K to 623K.

#### cycling stability of MgH<sub>2</sub>-5% purified SWNT composites







With cycling, hydrogenation kinetics was somehow decreased, but the capacity was unchanged.

#### 3. Concluding Remarks



- Efforts on CNTs are continuously made, and it is found that CNTs can absorb some amount of hydrogen.
- The hydrogen capacity of Mg can be considerably improved by addition of SWNTs ---Role of the novel carbon nanostructure?
- The utilization of as-prepared SWNTs leads to a more
   pronounced enhancement
  - ---Function of metal catalyst nanoparticles?
- Mg-SWNT is a promising system for hydrogen storage. The systematic investigations including mechanism elucidation are on-going.





## Acknowledgements

Dr. P. Wang Ph.D Student C.-Z. Wu Ph.D Student Y. Chen Master Student S.-T. Xu

- · NSFC
- · MOST
- The BP-CAS "Clean Energy Facing the Future" program





http://maomao520.yeah.net

# Thank you very much for your attention!





Http:// carbon.imr.ac.cn