Isolated metal molecules for hydrogen storage: predicted MH₁₂ species

Laura Gagliardi Department of Physical Chemistry University of Palermo Italy

Outline

- What is quantum chemistry about?
- What can we do nowadays with quantum chemistry?
- Prediction of metal-hydride species
- Going beyong MH_{12}
- Metal-hydrides @C₆₀

The Early Days

- The Nature of the chemical bond.
- Hybridization, delocalization, lone-pairs, covalent and ionic bonds.. (Pauling, Mulliken, Hückel, Slater and others).
- Ligand field theory for transition metal complexes (Bethe, Van Vleck, Mulliken, etc).
- Hückel theory for unsaturated hydrocarbons. Theoretical electronic spectroscopy (Hückel, Goepper-Mayer, Mulliken, etc).
- The central field model for atoms. Numerical solutions for atoms. Hartree-Fock theory (Hartree, Fock, Slater).
- The Born-Oppenheimer Approximation.

Computational Quantum Chemistry: THE COMPUTERS

- Building of models for computation around 1960:
- based on methods, partly formulated already in the 30ies (Hartree, Fock, Slater etc.),
- but which could in those days be applied only to simple systems (like atoms) or with severe approximations.
- 1960-70: First Methods: Closed Shell HF for molecules, open shell for atoms.
- First Codes: IBMOL (Clementi), POLYATOM (Czismadia, Harrison, Sutcliffe, Moskowitz, etc), 1970 GAUSSIAN (J. Pople)

Quantum Chemistry 1990-2005

- Density Functional Theory!
- Larger molecules, biochemistry!
- Multiconfigurational Perturbation Theory.
- Excited states for larger molecules.
- TD-DFT and CC-EOM (excited states). Linear scaling methods.
- Quantum Chemistry conquers chemistry the Gaussian era.
- 1998: Nobel prize in Chemistry to John Pople and Walter Kohn.

Quantum Chemistry and Chemistry today

Intermolecular forces

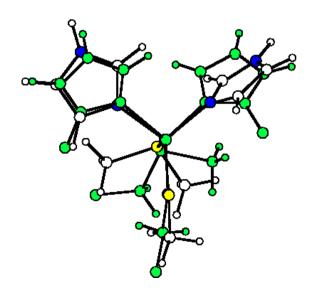
Electronic Spectroscopy

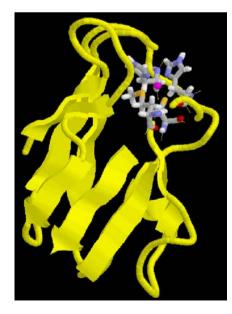
0.02

0.020

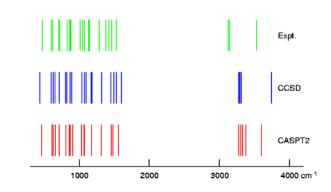
0.015

0.010


0.005


0-0

Photochemistry


FC

torsion

4.3 4.4 4.5 4.6 4.7 4.8

stretching

Energy

trajectory

Molecular Structure

Enzymatic Catalysis

Molecular Spectroscopy

Metal Hydrides

- Interesting as potential hydrogen storage systems (*Chem. Rev.* **104** 1283 (2004)).
- A design target of 6.5 wt% H has been regarded as adequate.
- Molecular-level calculations show that MH_{12} potential species are stable.
- M=Cr, Mo, W, V, Ti, Mn
- The previous MH_n species had n=9 in ReH_9^{2-} Wang, Andrews *Phys. Chem. A* **108** 1103 (2004)
- MH_{12} are a new record for metal hydrides.

Details of the calculations

- B3LYP and CASPT2 calculations.
- 6-31g** basis set on H (2s1p).
- Energy-adjusted Stuttgart ECPs on Ti (12 valence electrons), V (13), Cr, Mo, W(14) and Mn(15).
 Accompanying valence basis set 6s5p3d.
- Geometry optimization and frequency calculation: B3LYP.
- CASSCF/CASPT2 calculations at the B3LYP geometry: 12 electrons in 12 orbitals.

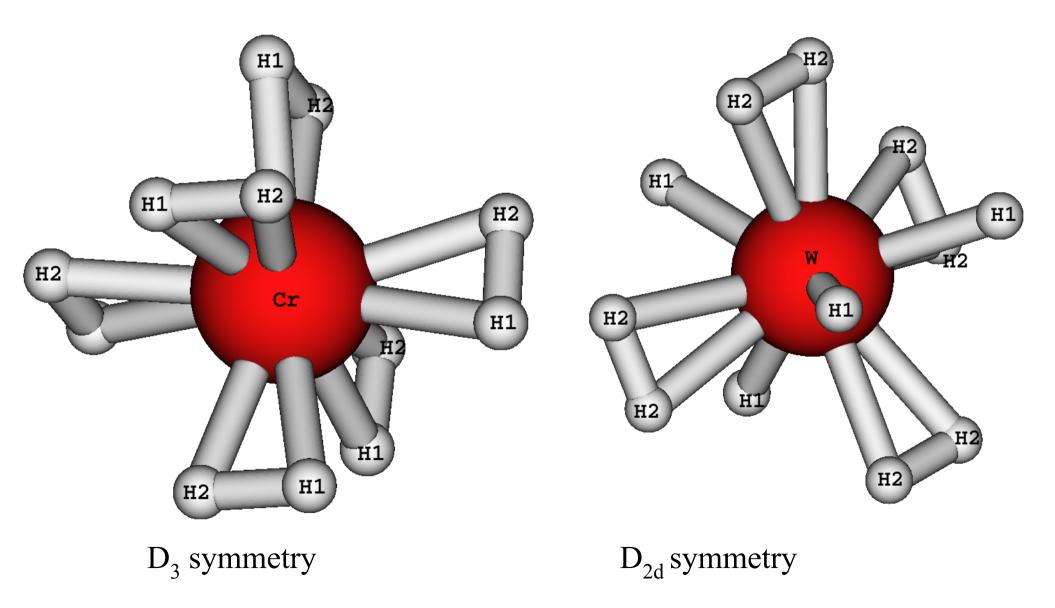

The structure of the MH_{12} species

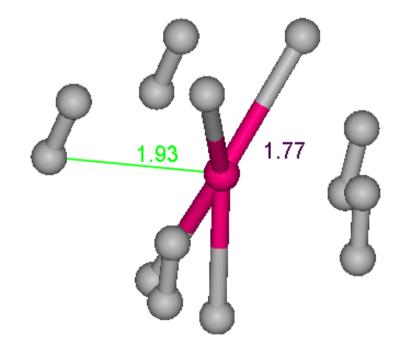
Table 1:							
	CrH_{12}	MoH_{12}	WH_{12}	${ m TiH_{12}^{2-}}$	VH^{-}_{12}	MnH_{12}^{2+}	
$M-H1(\sigma)$		1.713	1.738	1.877	1.686		
$M-H2(\dot{H}_2)$	1.707	1.853	1.861	1.898	1.760	1.756	
	1.713					1.761	
$egin{array}{c} \mathrm{M} ext{-}\mathrm{H1}(\sigma) \ \mathrm{M} ext{-}\mathrm{H2}(H_2) \ \mathrm{H} ext{-}\mathrm{H2}(H_2) \end{array}$	0.841	0.828	0.838	0.825	0.838	0.791	

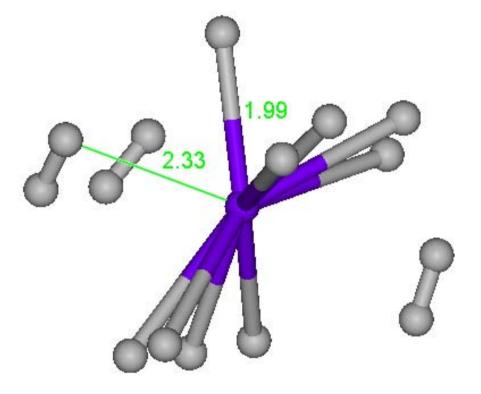
B3LYP bond distances (Å) for the MH_{12} species. H-H is the distance in the H_2 moiety. M-H1(σ) is the distance between M and a nonbound H atom. H-H2(H₂) is the distance between M and H forming a H₂ molecule

CASSCF/CASPT2: singlet ground state (the lowest triplet lies 60 kcal/mol higher in energy). 12 Active Orbitals: linear combination of Cr 3d and H 1s.

CrH₁₂ and WH₁₂

Predicted MH₁₂ species

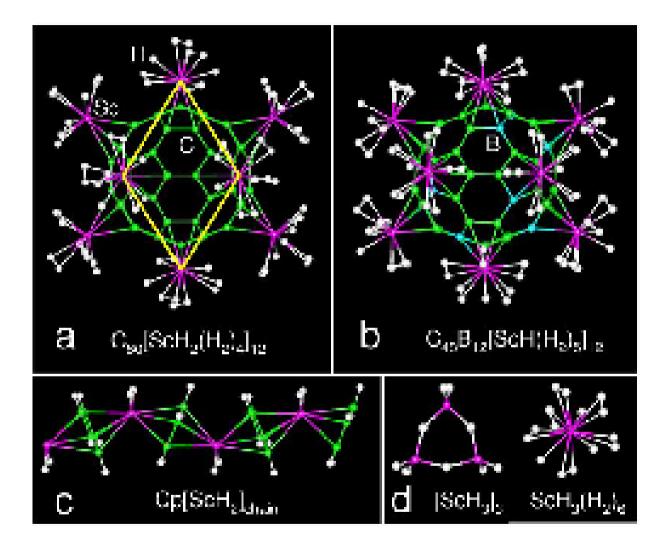

- The MH_{12} compounds have either a mixture of M-H and $M(\eta^2-H_2)$ bonds or only dihydrogen bonds .
- The formation reaction $6H_2+M\rightarrow MH_{12}$ is 15 kcal/mol endothermic for M=Cr and 55, 89 kcal/mol exothermic for M=Mo,W, respectively.
- The MH_{12} clusters are more stable than the corresponding MH_4 and MH_6 clusters.
- Lester Andrews has recently detected some MH_{12} species in his matrix.


Gagliardi and Pyykkö J. Am. Chem. Soc. **126** 15014-15015 (2004); Chem. & Eng. News 82 p 54 Nov. 22 (2004)

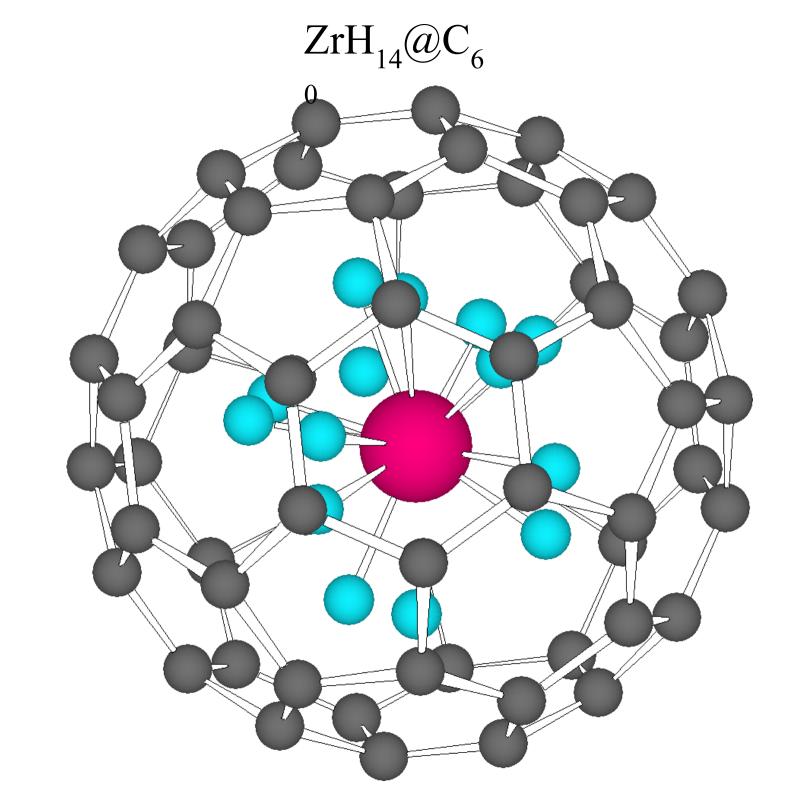
Beyond n=12

- Can we make clusters with a larger number of H atoms?
- Are species like TiH_{14} and YH_{15} also stable?
- 18-electron rule still fulfilled.
- In C_s symmetry all real frequencies.
- However, very long M-H bonds.
- They are not more stable than $TiH_4 + 5H_2$ and so on.

The structure of TiH_{14} and YH_{15}


TiH₁₄

YH₁₅


How can MH_n species be stabilized?

- Make the MH_n species inside a C_{60} cage.
- ZrH_4 , ZrH_{14} , ScH_{15} and ZrH_{16} are stable inside C_{60} and have shorter M-H bond distances than as isolated molecules.
- All real frequencies.
- What is the synthetic route to put MH_n inside C_{60} ? L. Gagliardi Angew. Chem. Int. Ed. Submitted (2005)

Hydrogen Storage in Novel Organometallic Buckyballs

Zhao, Kim, Dillon, Heben and Zhang PRL 94 155504 (2005)

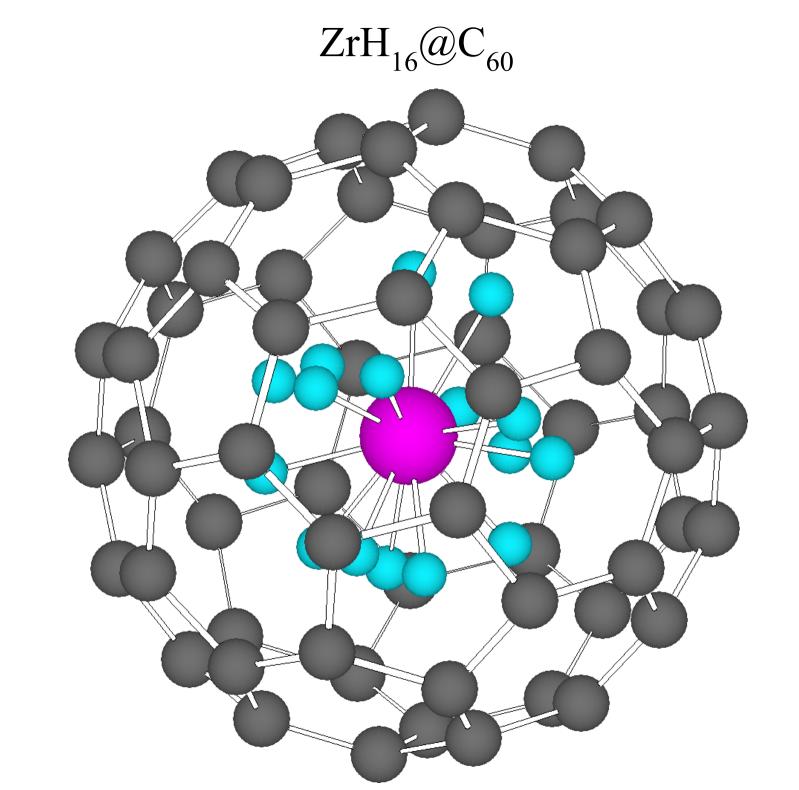


Table 1: Typical bond distances (Å) for the MH_n species. $M-H(\sigma)$ is the distance between M and a nonbound H atom. $M-H(H_2)$ is the distance between M and H forming a H_2 molecule. H-H is

	M-H(σ)	$M-H(H_2)$	H-H(H ₂)	H-C
ZrH_4	1.859			
ZrH4@C60	1.706			2.095-2.633
$\rm ScH_{15}$	1.865	2.018-2.232	0.806-0.861	
ScH ₁₅ @C ₆₀	1.739	1.775-1.891	0.802-0.875	1.848-2.643
ZrH^a_{16}	1.87-1.88	2.124-2.136	0.827-0.829	
ZrH ₁₆ @C ₆₀	1.753	1.807-1.853	0.807-0.917	1.841-2.635

the distance in the H_2 moiety. (See Figures 1, 2, 3)

^a ZrH₁₆ is ZrH₁₂ +2 H₂

In progress

- Synthetic route has to be understood.
- May it be easy to make molecules inside a nanotube than inside C_{60} ?
- May other species exist inside C_{60} ?
- Preliminary calculations indicate that $CH_4@C_{60}$ is also stable.
- Formation reactions are endothermic.

Collaborators

- My group in Palermo: F. Ferrante, R. Cortese, C. Prinzivalli and E. D'Anna
- Pekka Pyykkö Helsinki
- Björn O. Roos and MOLCAS group:
- http://www.teokem.lu.se/molcas
- Research funded by MIUR

Future Collaborations

• I am here to learn from all of you!