

International Partnership for Hydrogen and Fuel Cells in the Economy

Japan Update

31st IPHE Steering Committee Meeting 10 – 11 April 2019 Vienna, Austria

1. Schedule for Inter national Conference

- > 2nd -7th June 2019, WHTC 2019
 - Share information on the current state and future direction of hydrogen energy research, technology, social implementation, policies
- 15th-16th June 2019, G20 Ministerial Meeting on Energy Transitions and Global Environment for Sustainable Growth
 - Confirm the importance of hydrogen in the Communique of G20
 - Presentation and input about hydrogen by Hydrogen Council
- > 25th September 2019, Hydrogen Energy Ministerial Meeting2019
 - Share global hydrogen target
- 2. Funding
 - METI decided to have JPY 63 billion (US \$ 630 M) for Hydrogen and fuel cell budget of FY2019.

31st IPHE Steering Committee –Vienna, Austria April 2019

The Strategic Road Map for Hydrogen and Fuel Cells \sim Industry-academia-government action plan to realize Hydrogen Society \sim (overall)

- In order to achieve goals set in the Basic Hydrogen Strategy,
- ① Set of new targets to achieve (Specs for basic technologies and cost breakdown goals), establish approach to achieving target
- 2 Establish expert committee to evaluate and conduct follow-up for each field.

		Goals in the Basic Hydrogen Strategy	Set of targets to achieve	Approach to achieving target
		FCV 200kb y2025 800kby 2030	2025 • Price difference between FCV and HV ($\$3m \rightarrow \$0.7m$) • Cost of main FCV system (FC $\$20,000/kW \rightarrow \$5,000/kW$ Hydrogen Storage $\$0.7m \rightarrow \$0.3m$)	 Regulatory reform and developing technology
	Mobility	HRS 320 by 2025 900 by 2030	2025 • Construction and operating costs Construction cost ¥350m → ¥200m • HRS components cost Compressor ¥34m/year → ¥15m/year	 Consideration for creating nation wide network of HRS Extending hours of operation
Use	Σ	Bus 1,200 by 2030	 HRS components cost (Compressor ¥90m → ¥50m) Accumulator¥50m → ¥10m) Early 2020s Vehicle cost of FC bus (¥105m → ¥52.5m) ※In addition, promote development of guidelines and technology development for expansion of hydrogen use in the field of FC trucks, ships and trains. 	Increasing HRS for FC bus
	Power	Commercialize by 2030	2020 ● Efficiency of hydrogen power generation (26%→27%) %1MW scale	 Developing of high efficiency combustor etc.
	ñ	Early realization of grid parity	 <u>2025</u> • Realization of grid parity in commercial and industrial use 	 Developing FC cell/stack technology
Supply	Fossil +CCS Fuel +CCS	Hydrogen Cost ¥30/Nm3 by 2030 ¥20/Nm3 in future	 <u>Early</u> Production: Production cost from brown coal gasification (¥several hundred/Nm3→¥12/Nm3) Storage/Transport : Scale-up of Liquefied hydrogentank (thousands m→50,000m)) Higher efficiency of Liquefaction (13.6kWh/kg→6kWh/kg) 	 Scaling-up and improving efficiency of brown coal gasifier Scaling-up and improving thermal insulation properties
Su	Green H2	System cost of water electrolysis ¥50,000/kW in future	 2030 Cost of electrolyzer (¥200,000m/kW→¥50,000/kW) Efficiency of water (5kWh/Nm3→4.3kWh/Nm3) electrolysis 	 Demonstration in model regions for social deployment utilizing the achievement in the demonstration of Namie, Fukushima Development of electrolyzer with higher efficiency and durability

Examples of Lessons Learned and Impact (Japan)

Program initiative, policy, regulation or mandate	Lessons Learned/Outcomes
Basic Hydrogen Strategy	 The first national strategy on Hydrogen. Investment will be accelerated by sharing visions with industries.
Strategic Roadmap for hydrogen and fuel cell	 In order to achieve the goals set in Basic Hydrogen Strategy, detailed targets and action plans have been set by government collaborated with industry.
De-regulation of HRS	 Regulations of HRS are being revised for reducing the cost of HRS. Especially, no-man operation of HRS will be allowed by 2020.
Hydrogen Supply Chain Projects (Feasibility Study) 1. Japan – Australia Pilot Project 2. Japan – Brunei Pilot Project	 Large scale hydrogen projects will be a key to reduce hydrogen cost. Feasibility studies should be conducted firmly.
2020 Olympic and Paralympic Games 2025 OSAKA-KANSAI JAPAN EXPO	 Use these opportunities for hydrogen showcase by looking ahead to 5 years and more. Outreach and education

Applications - Current Status and Goals (Japan)

*		
Application	Status (As of March 2019)	Goal (For <i>2030</i>)
Fuel cell vehicles	3,026	800,000
Hydrogen stations	103	900
Fuel cell buses	18	1,200
Electrolyzers	10.9 MW	Only Cost target only
Primary fuel cell power units	-	-
Backup power fuel cell power units	-	-
Combined Heat and Power (Ene- FARM)	276,217	5.3 M
Hydrogen Cost	Several hundred JPY/Nm3	\30/Nm3 (CIF)

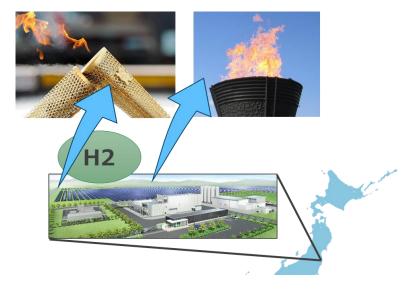
Summary of Global Hydrogen Target (@HEM 2019)

Set "Global Hydrogen Target" to share global goal.

	April -2019	2030 Target(Proposal)
Number of FCV in the World	12,012	11,000,000
Number of HRS in the World	233	12,000
Stack Platinum Content	-	0.1 g/kW
Hydrogen production cost	-	Equivalent to Natural gas price in future considering environmental value
Electrolyser	-	4.3 kWh/Nm3

* Targets would be based on the data and targets of each country

Global Hydrogen Target (Hydrogen Energy Ministerial Meeting 2019)


• Based on each country's target, Global Hydrogen Target would be an agenda of HEM 2019.

6 lobal Hydrogen Target b	oward 203	0 (C O N	CEPT)*1		A dd it	tiona I cou	intry data	are necess	ary to s	et the 6 lobal H	ydroge	n Target.										Globa	lHydrog	gen Ta	argett	oward 203	0 (C O N C	EPT)*1		A dd itio	nalcour	ntry data	are nec	essary t	to set the	6 loba i	H yd ro	gen Ta	rget.							
			1	2		3	4		5		6		1			,	The sum o	, 6 bb	a i Hydrogen	(0	0						8		9	10		11		12	13		14		15		16	17		18	19	
		lln ited	States	Germ any	Fr	ance	U n ited		Japan	n	Chin	a	Repub				all countrie		Target	< R	rt.> 1 Gouncil						Austra	lia	Austria	Bra	rii	Canada		opean	l ce la n	d	ind in		i ta iy	Nath	erlands	Norw		lussian.	Repub	
		0111000		a o in any		anoo	Kingdom		oupun				Kore	a	Seven cu	unues	ancounce	•• - F	Proposal -	n yuroge	Connen							-		-			Com	ission		-		.					-' Fe	deration	South /	٨fr
l ob ility]		current	2030	current 2030	current	t 2030 o	current 203	l0 current	t	2030 cur	irrent	2030 cu	rrent	2030 cu	rrent	2030	2030		2030	2030	2050	[N ob	ility]				current 2	1030 cur	rent 2030) current	2030 cu	rrent 20	30 curren	t 2030	current 2	:030 cur	rrent 2	1030 cu 1	rrent 203	0 current	t 2030	current	2030 cur	rent 2030	current	203
	FCV	6.315	1.000.000	500 -	32	4 50.000	100		3,026	800.000	60		600 2	.750.000 1	1.225					10,000,000~	400.000.0	100				FCV						17								5	3 2.000					_
	107	0,010	1,000,000	340	32	4 30,000	100		3,020	000,000	00		500 2	,739,990 1	1,220					15,000,000	400,000,0	.00				107															3 2,000					i i
	Bus	30	-	16 -			20		18	1.200	200 1	000,000	2	40 000	286					新車販売の	5,000,0	10.0				Bus						1									8 100					1
) Number of FCV in the World	000			10		2,000				1,200	200		1	10,000						105	0,000,0	1 Num	ber of FCV	in the W	orid	000																				i i
	Truck	-	-			1	-	-		-	500		-	30,000	501					500,000	15,000,0	100				Truck						0								:	3 500					
	Sun	6.345	1.000.000	516 -	32	5 52,000	120		3,044	801,200	760 1	,000,000	902 2	820 000 1	2 012	5 673 200	10,949,27	76 1	1,000,000		420,000,0	100				Sun																			++	<u> </u>
			1,000,000	010		0 01,000	120	_	0,044	001,200	100					0,070,200	10,040,21	· ·	1,000,000										_										_						\rightarrow	-
2) Number of HRS in the World	70 M Pa 0 n-Site Production &	39	1 000	55 1.0	00	3 1,000	13	100	103	900	2	1.000	14	1,200	229	6.200	11.9	66	12,000	15,000		2 Num	ber of HRS	S in the W	Forid	70 M Pa On-Site Production &						2	8								2 20					i
	Delivered			00 1,0			10		100		1	1,000		1,200		0,200				10,000		40 H G	ber ernne			Delivered						-														i i
																	1																													<u> </u>
Retail price of FCV									Equ i	ivalent to HEV		< 3 ≡ \$					×1.83 (+4	() Equival	ient to HEV			3 Retail	ail price of FC	CV																						i
																																														i
) International com m on spec																							mationalcom	m m on s	spec																					
for HRS																						for i																								-
) Variety of FCV lineup										die, large and SU									hrge and SU				ety of FCV li																							i
(Medium to large vehicle and										icles available in market								veh islea III arket	a available in the	1		(NIE SU)	dium to large	te venica	e and																					i i
SUVs)	Train								ule I	II SIKEL	_				_			a sirar				501	VS)			Train			_										_						+	-
) Train and Ship	Ship				-	_		-															n and Ship			Ship		_	_					-		_			_					_		-
) PowerDensity	kill /L				-			_	2.0	6.0	2 2	(0 2020)	_		-			_	8.0			(7) Pow	er Density			kil /L		_	_				_	-		_			_		-			_	+	
Durability	hour				-			_	3.0	> 15 (year) 3	3 000	8,000			_				> 15 (year)			(8) Dura				hour		_	_		_		_	-		_	_		_	_				_	+	
9) Stack Platinum Content	g/kll						_			0 1	0.000	(# 2020)			-			- ·	0.1				sk Platinum C	Content		g/kll		_		_	_		_	-			_		_					_	+	_
[Hydrogen Production and	Transportat	tion]																				[H yd	rogen Pro	oducti	ion and	Transportat	ion]																			_
) Hydrogen production cost																		Equival	iont to il atura i	1		 Hyd 	rogen produ	uction co.	et.	1	1																			
(ex. equivalent to natural gas	US\$/kg (+2)								10.1	1.01									ke in future				quiva lent to			US\$/kg (+2)																				i i
FOB price)								(100~JPY/	Nm 3)	(10 JPY/Nm 3)								oonside					FOB price)		. 5.00																					i
2) Liquid hydrogen tanker safety																			nn entalvalue 1110 cords by				id hydrogen	tenker	40.50.51			_					_													-
regulation								2025	i ~ (P)									2025	i ill u coras by				ia inyorogen i lation	L MILLER :	ad in Ly																					i
International standard for					-		_	_			_		_		_			2020					mationalista	andard 1	br			_	_		_		_	-		_			_	_	-			_	+	
the clean hydrogen																							clean hydrog																							i
) Electrolyser	US\$/Nm 3/h (+2.3)			2,02	,	2,027		1	,163	2027									2.027				tro lyser	•		US\$/N=3/h (+2.3)																				<u> </u>
– a ka line electro lyser	U33/NH 3/H (#2,3)	9		2,02	ʻ	2,027			,199	(223000												- a k	ka line electro	o lyser		US8/NE 3/E (#2,3)																				i
(Capital cost, Electricity consumption,	kW h/N = 3			4.	3	4.3				4.3									4.3			(Cap ita	I cost, E lectric	icity consu	um ption,	kW h/Nm 3																				
Degradation rate)	%/1,000 h			0.	1	0.1				0.1									0.1			Degrad	dation rate)			%/1,000 h																				
[industrie U tilization]					_				_						_							Lindu	Istriniut	liizatic	n			_								_	_		_	_						
		1			-					2.33~3.74	-		-		-					1		-						-	-		-		-	1		-	-	-							+	
) Carbon free hydrogen used	US\$/kg (+2)									econom ically								Den ons	stration project				bon free hydi		sed	US\$/kg (+2)																				i
in Refinery (R&D)										equivalent to								phase				in R	efinery (R&	&D)																						i
) Deoxidization of iron ore					_				exis	sting-energy cost	_		_						stration project			(2) Bac	xidization of	t iron ora				_		_				_		_			_	_	_			_	+	<u> </u>
using carbon free hydrogen																		phase	ieneren bloten	1			g carbon fre																		1					i
) Forklift		20,000	-	100 -	180	-			160	10,000	2	-	-	-	-							(3) Fork		io injuroj	5vii				-	-	_	400	-				_		-	-					+	<u> </u>
"ENE-FARM"		+			+			276	.000	5,300,000	_		-	-	-					1			E-FARM "					-	-		_		-	-		-								-	++	<u> </u>
		1 1																				-									_							_								_
1 Targets are not obligation nor assigne	d to each country	and region																						b ligation	nor assigne	d to each country	and region																			
2 1 US\$ = 110 JPY 3 1 g = 130 JPN								_															S\$ = 110 JPY = 130 JPN	\square																						
∙3 1 € = 130 JPN •4 1.93 = (Num berofm otervehickes in u	use in all countries	e) / Num ha	r of moter v	ehirle in use in	avan mur	trips)		-										-		-				ofeoter	vehir les in i	use in all countries) / Num har r	of motor v	ehirle in use	a in seven cou	intries)		_							_						
This num ber is calculated based of								-					_		_			-		-						on the data of FOI							_	-		_	_		_	_	-			_	+	
																		-																-							-				++	
					- 1			1										1			1										(1					1

Olympic and Paralympic game in 2020

Olympic torch and flame

- IPHE
- ✓ The fist Olympic and Paralympic game with Olympic Torch and flame lighted by hydrogen

Can be colored in various colors !

Transportation

31st IPHE Steering Committee – Vienna, Austria April 2019

Thank you

International Partnership for Hydrogen and Fuel Cells in the Economy