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Abstract: An integrated modeling and optimization based approach is presented for the efficient, safe and economic hydrogen storage using advanced solid materials.
First, recent advances on dynamic optimisation are utilized to develop optimal operating policies and novel cooling systems design options for hydrogen storage in metal
hydride. The approach takes into account realistic operating constraints related to maximum allowable tank temperature, maximum pressure drop and cooling fluid
availability. A multiscale modelling and optimisation framework is also investigated to explore the synergistic benefits between material design and storage processes
design and operation using nanoporous carbon. The framework relies on a novel iterative strategy between formal molecular simulation techniques and advanced macro-
scale optimisation methodologies. Results indicate how process operating constraints, potentially expressing safety concerns, can affect the material design.
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Optimal time scheduling of the pressure history, (a), and time evolution of: (b) H, mass
uptake in the metal hydride reactor, (c) 47,,,and (d) 47,,,in the metal hydride reactor
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Macroscopic Simulation

2D Cylindrical Geometry

Conservation of mass
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Conservation of Momentum (Darcy’ s law)
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Mass balance for the metal hydide Adsorption kinetics (LDF model)

(1—s)4%:c,zﬂ-expew»ln[g}(ﬁm—A) 4 poy)

Definition of Equilibrium Pressure (Jemni and
Nasrallah, 1995)
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Adsorption Isotherm (Langmuir)
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Solve using advanced dynamic Optimisation techniques in gPROMS™
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Conclusions: .

#Significant improvements in the total storage time can be achieved
when optimising the design of cooling systems in metal hydride beds.

» Optimal hydrogen charging rate is an important control variable to

ensure satisfaction of maximum temperature limitations inside the bed.

eProcess operating constraints, expressing safety considerations, can
significantly affect Pore Size Distributions in nanoporous carbons.

» Material and Process design should be simultaneously modelled,
designed and optimised in hydrogen storage systems to achieve an
efficient, safe and economically attractive operation
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Nano-Porous Carbons (graphite structure)
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GCMC Simulation-Construction of a Database
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Iterative Process
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