

Development of Hydrogen Energy/Fuel/Cell in Taiwan Bureau of Energy Ministry of Economic Affairs Republic of China (Taiwan)

Taiwan's Energy Policy

energy demand and supply system

MOEA Structure of Energy Supply in Taiwan

- ▶ Due to the shortage of indigenous energy, more than 97.9% of energy is imported.
- ▶ Imported crude oil is the major portion of energy supply and 76.7% of it is from the Middle East.
- ▶ During 1984~2004, average annual growth rate of energy supply is 6.4%

134.06 Million

MOEA Structure of Energy Consumption (by Sector)

□Focus on system technology platforms that have the widest possible applications

- Look for the best synergies between the fuel cell technologies and the existing infrastructures (reducing entry barriers & accelerating commercialization)
- Conduct technology validations through lab. and field demonstrations
- Develop H_2 infrastructure technologies that would enhance the long-term energy security

MOEA A History of Taiwan FC/H₂ Development

MOEA CHP System Technology Development

•1 kW PEMFC System Eff. @ 46% AC electrical efficincy with different H₂ flow rate

300W PEMFC Power System

Power Module Specifications:

- Hydrogen Consumption: 3.6 slpm
- Electricity Output: 300W, DC12V
- Electrical Efficiency: 40%
- Air Cooling

1 kW PEMFC (H₂) Combined Power and Heat System

Power Module Specifications:

- Hydrogen Consumption: 12.0 slpm
- Electricity Output: 1 kW、 Single Phase、 110V/220V AC
- Overall Efficiency: 75%
- Electrical Efficiency: 46%

Water Tank Specifications:

- Storage Capacity: 250 Liters
- W/D/H: 50/50/130 cm

3 kW PEMFC (Reformate) Combined

Power and Heat System

Power Module Specifications:

- Methane Consumption: 25.0 slpm
- •Electricity Output: 3 kW、Single Phase、110V/220V AC
- Overall Efficiency: ~ 55%
- Electrical Efficiency: ~ 20%

Water Tank Specifications:

- Storage Capacity: 250 Liters
- W/D/H: 50/50/130 cm

MOEA Composite Bi-polar Plate Development

Items	Targets	Achieved
Properties		
Conductivity	> 100 s/cm	170 s/cm
Corrosion	$< 16 \text{ mA/cm}^2$	0.45 mA/cm²
Current		
Tensile	>3000 psi	4500 psi
Strength		
Bending	>4000 psi	7800 psi
Strength		

MOEA Solution NG & MeOH Reformer Development

1 kW NG Reformer

 $-H_2 20 L/min$ $-H_2 Conc. \ge 37\%$ $-CO Conc. \le 70 ppm$

3 kW NG Reformer (I)

 $-H_2 50 L/min$ $-H_2 Conc. \ge 45\%$ $-CO Conc. \le 20 ppm$

1 kW Methanol Reformer

50* 30*20 cm (H*W*D)

8

 $-H_2 \quad 30 \text{ L/min}$ $-H_2 \text{ Conc.} \ge 50\%$ $-CO \text{ Conc.} \le 20 \text{ ppm}$

MOEA A National Fuel Cell Test Center

300~600 W Test Stations (In House)

2, 5 & 12 kW Test Stations (Industrial Grade)

Taiwan Fuel Cell Partnership

MOEA Summary of Other Activities and Achievement

- I kW portable power unit suitable for increasing outdoor recreational power demands
- Taiwan Fuel Cell Partnership becomes a member of the US Fuel Cell Council and interactions at the Working Group level start
- The 1st round robin test, based on *ASME PTC 50-2002*, was completed in 2004 and the 2nd round robin test is underway

MOEA A Milestones of Taiwan's Fuel Cell Development

1987	TPC/ERL/ Feasibility Study
1988	EC/ERL/ PAFC Program
1995	EC/ERL/TPC/ 200kW PAFC Power Plant Demonstration
1998	EC/ERL/ Adjusted to Develop PEMFC Technology
1999	TIER/ Fuel Cell Scooter Promotion
2000	EC/ITRI/ Fuel Cell HPS Program
	EC/YZU/ Fuel Cell Research Program
	APFCT/ Fuel Cell Stack and Scooter
2001	DoIT/TBIRDC/ Fuel Cell Bike
	EC/MRL/ Hybrid Fuel Cell Vehicle
	EC/EPA/TIER Taiwan Fuel Cell Partnership
2002	DoIT/MRL/ DMFC Program
	DoIT/Jemmytex/ 1kW PEMFC Generator Using Hydrogen
	NSC/Universities/ 48 Fuel Cell Projects
	Dupont/APFCT Fuel Cell Scooter Program
	EC/ERL 1 kW Hydrogen Combined Power & Heat System Prototype
2003	AEC/INER/ SOFC & DMFC Program
	DoIT/YZU Fuel Cell Research Program
	IDB/APFCT/ PEM Stack Assemble Line Project
2004	BOE/TIER Strategic Fuel Cells and Hydrogen Development Planning Completed
	BOE/ERL 3 kW NG-based Combined Power & Heat System Prototype

MOEA AH₂ Infrastructure Technology & PEMFC System Development

Integrated Renewable Energy and

Fuel Cell Power Generation Demonstration

MOEA Section PEMFC Scooter System Development

MOEA Secondaries Secondaries System Development

Hydrogen Station

Southern Taiwan Science Park

Fuel Cell Bus & Car

ITRI Southern Campus

17

Innovative Energy Tech. Station

MOEA Solution OMFC Technology Development

Sponsored by DolT

Energy Conversion Efficiency

Cellular phone(2010)

Notebook PC(2007)

Power Pack(2005)

7	Year	2002	2004	2006	2008	2010
ency	Catalyst	200 mA/mg	nA/mg 250 mA/mg		300 mA/mg	450 mA/mg
fici	MEA	100 mA/cm ²				
– System Energy Ef		$100 \text{ m} \text{ A}/\text{am}^2$	200 mA/cm²	300 mA/cm ²		
	Conducting Membrane	10 ⁻⁴ S/cm 10 ⁻⁶ cm/s	10-3 S/ 10-7 cn	cm n/s	10 ⁻⁸ cm/s	400 mA/cm^2
		60~70			10 ⁻² S/cm	10 ⁻² S/cm
	System	200Wh/Kg	400Wh/1 50~60	Kg	600Wh/Kg 50~60	1200Wh/Kg 50~60

Public and Private R&D Investment in H₂ Infrastructure & Fuel Cells Technologies

	2003	2004	2005
Public	NT\$ 250 M	NT\$ 260 M	NT\$ 350 M*
Budget	(US\$ 7.6 M)	(US\$ 8.1 M)	(US\$ 11.1 M)
Private	NT\$ 100 M	NT\$ 100 M	NT\$ 100 M*
Investment	(US\$ 3 M)	(US\$ 3 M)	(US\$ 3.1 M)
Total	NT\$ 350 M	NT\$ 360 M	NT\$ 450 M*
	(US\$ 10.6 M)	(US\$ 11.1 M)	(US\$ 14.2 M)

*: Figures are estimates up to May, 2005

Public and Private R&D Investment in H₂ Infrastructure & Fuel Cells Technologies

Academia	Basic Research in DMFC, SOFC, PEMFC and H ₂
Research Institutes	R&D in PEMFC, SOFC, DMFC and H_2 Key Components and System Technology
Private Sector	Development of Key Components, and Integration/Demonstration of PEMFC, DMFC and Metal Hydrides

Concluding Remarks

- Significant progress made for PEMFC CHP system development in Taiwan and future focus on performance/durability improvement, cost reduction and field demonstrations
- DMFC & SOFC also making headway into system integration with potential industrial and energy impacts
- Hydrogen infrastructure technology a new R&D element, focusing on high-efficiency, cost-effective and distributed production methods and composite /chemical storage technologies

Concluding Remarks

- Substantial, long-term resource commitments from the public and private sectors to hydrogen and fuel cell technology R&D activities with a coordinated objective to advance technology deployment and early commercilization
- International cooperation, e.g. IPHE, on technology development, demonstrations, standards and codes will cut cost and accelerate early markets development and the hydrogen transition