

Reversible on-board Storage: Metal Hydride R&D

Rapporteur & Session Co-Chairs Andreas Zuettel, Craig Jensen, Rosario Cantelli

Alanates

- Pros: dehydriding kinetics and cycling behavior
- Cons: capacity less that 5%
- Quantitative results: 3.5-5.0 wt%
 - T=100-150 °C
 - $\Delta H=37 \text{ kJ/mol}$
- Comment: Na alanates best studied
- Other alanates should be explored

Amides

- Pros: capacity and cycling behavior
- Cons: dehydriding kinetics
- Quantitative results: 5-9 wt%

$$\Delta H(Li/Mg) = 43 \text{ kJ/mol}$$

Comment: mixed metal amides show promise

Borohydrides

- Pros: capacity
- Cons: kinetics, reversiblity in some cases
- Quantitative results: ~ 9 wt%

- $\Delta H(LiBH4/MgH2) = 45 kJ/mol$
- Comment: mixing with binary hydrides shows
 - promise

Applications

- High pressure metal hydride tank has been developed by Toyota
- Optical hydrogenography has been shown to have diagnostic applications for hydrogen storage

Highlights

- Adequate dehydriding <u>and</u> re-hydriding kinetics have been achieved with Na alanate
- Mixed amides found to have high capacity, reversibility, and improved kinetics
- Borohydride/binary hydride mixtures found in some cases to be reversible
- Mechanism of reversible dehydriding of doped complex hydrides found to involve high mobility, defect hydrogen complexes

Barriers discussed in the Session

- Reversibility
- Kinetics
- Thermal management
- Others

Ongoing collaborations

- University of Hawaii: University of Rome "La Sapienza", University of Milan, IFE (Norway), General Electric, Univ. Tohoku
- Nat. Univ. Singapore: Sandia NL, Inst. Appl. Energy (Japan), Wolf (Germany)
- Tohoku Univ.: Univ. Hawaii, Toyota R&D, Univ. Fribourg, Sandia N.L.
- Univ. Fribourg: Univ. Tohoku, Univ. Amsterdam, IFE, Univ. Birmingham, Univ. Hiroshima, Toyota R&D, BMW
- MPI: Opel/General Motors

Proposed collaborations

- University of Rome "La Sapienza" University of Hawaii – University of Milan – AIST (Tsukuba)
- Univ. Salford Univ. Tohoku Univ. Fribourg

