

Russian Hydrogen and Fuel cell Program (country update)

12 Joint IPHE Implementation and Liaison & Steering Committee Meeting December 1-3, 2009 Washington (DC), USA

Energy Strategy 2030 targets: power production in Russia

Priorities in H2\FC technologies are determined by the main targets of longterm social and economic development of the Russian Federation

Annual gross domestic product

Energy consumption

Electricity consumption

Annual electricity production

Energy saving

30 000 – 35 000 USD (2000) per capita 0.32-0.34 tce/1000 USD GDP 0.35-0.37 kW h/USD GDP 2000 bln. kW h 0.4 bln. tce

Structure of the Russian power production sector for 2030

Power generation, GW

New power units for 2030		
Thermal	250 GW	Coal (110 GW) and NG (150 GW)
Nuclear	67 GW	New (44 GW) and Upgraded (23 GW)
Hydro	66 GW	New (20 GW) and Upgraded (46 GW)
Maneuverable	9 GW	Hydro Pumped and Hydrogen
Distributed and back-up	20-30 GW	Incl. Renewables(10-20 GW)

Objectives:

To increase energy efficiency and environmental safety of power production and utilization of primary energy sources through use of hydrogen technologies

To increase the share renewables in the country's energy mix	 High pressure electrolyzers; Co-generation systems; Hydrogen storage; Fuel cells
Improve system's load management for nuclear and coal power stations in the European part of Russia	 High pressure electrolyzers; Hydrogen-oxygen steam generators; High temperature fuel cells (SOFC and MCFC)
Combined power and heat supply for distributed customers	 Fuel processors; Purification and compression; Co-generation systems; Fuel Cells; Storage systems
To use hydrogen containing by-product gases for autonomous power supply in industry	 Separation and storage technologies; Turbines; Hydrogen combustors, Fuel Cells
To increase environmental safety and efficiency of power plants	 Purification and compression; Electrolyzers; H₂/O₂ steam generators; Storage; Hydrogen cooling for turbogenerators
Portable and back-up power supply	 Fuel processors; Low temperature fuel cells; Reversible and regenerable hydrogen storage
Hydrogen for chemical industry, metallurgy, oil processing, etc.	 Fuel processors with CO₂ sequestration; High pressure electrolyzers; Separation and storage technologies
Hydrogen for advanced technology in food, glass, electronic, pharmaceutical industries	 High purity hydrogen supply equipment;
Clean hydrogen and hybrid vehicles	 On-board storage and fuel processing; Fuel cells
Aerospace industry	 Advanced liquid hydrogen technologies; Rocket engines; Supersonic Combustion RAMJET

Hydrogen production

	2008-2012	2013-2020	2021-2030
Electrolyzers Low temperature High pressure (15 MPa)	Components design; Catalysts; <4.2 kW h/m ³ 10 m ³ /h	Prototypes and Demonstration (up to 100 m ³ /h);	<4 kW h/m ³ , 100 m ³ /h <3000 €/(m ³ /h); Infrastructure integration
Fuel processors and microprocessors	Catalysts; 10 m ³ /h experimental devices; microprocessor prototypes	Prototypes; Demonstration; Small-scale production	eff. 80%, 100 m ³ /h CO ₂ sequestration; Infrastructure integration
Advanced liquefaction	Components design; experimental devices; Delivery facilities	Prototypes; Delivery facilities	14-15 kW h/kg 7000 -10 000 €/t; Infrastructure integration

Hydrogen Production: PEM electrolyzers

New generation of electrolysis system based on PEM for high purity hydrogen production at high pressure (up to 130 bar)

RRC "KURCHATOV INST

Hydrogen Production: fuel processors

reformer unit for steam

5 kW_e SOFC plant

reforming of natural gas in a

Microreactor for production of hydrogen in catalytic methanol steam reforming

28 l/h at 400 °C 10 l/h at 260 °C

Microreactor for production of hydrogen in catalytic methane partial oxidations

380 l/h at 850°C and 80% methane conversion

Aluminium-Hydrogen Technologies

Self-contained power sources or chargers for supply of: intercommunication and telecommunications systems and equipment: radio, satellite and mobile connection, monitoring, safety and data transfer system in the absence of external power supply or in emergency situation, as well as various consumer applications for potable equipment

Laptop power source Output power 30 W, Energy output ≥ (4*15 W-h).

Mobile phone charger Output power - 3 W, energy output - 3 W-h.

High temperature hydrogen generator based on hydrothermal aluminium oxidation 4 μ³/h of H₂ (0.36 kg/h – 12kWh) and 6 kg/h of nanocrystalline AlOOH

> Joint Institute for High Temperatures RAS

Hydrogen Production: PLASMA TECHNOLOGY of HYDROCARBON CONVERSION

into HYDROGEN (SYN-GAS)

<complex-block>

Designed

for providing zero and low emission transport with hydrogen using conventional gasoline stations infrastructure

COMPACT PLASMA CONVERTER

RRC "KURCHATOV INSTITUTE

HYDROGEN ENERGY & PLASMA TECHNOLOGY INSTITUTE

Hydrogen storage

	2008-2012	2013-2020	2021-2030
On-board storage for hybrid vehicles	New materials (up to 4-5% wt/); Composite (50 MPa) vessels; Experimental tanks	Prototypes 1-1.5 kg H ₂	Demonstration projects 2.5 kg H ₂
On-board storage for FC vehicles (Irreversible and regenerable)	Experimental systems; Composite (50 MPa) vessels;	Prototypes integrated with FC;	Demonstration projects up to 5 kg H ₂
Reversible for stationary applications	New materials; Experimental systems for 10 m ³ /h and 10 kg H ₂ ;	Prototypes integrated with FC (5-100 kW); Commercialization back-up power	Commercialization autonomous power supply;
Irreversible systems for stationary and portable applications	Catalysts; New materials; Experimental systems for 10 kW; Prototypes of portable systems	Prototypes and Demonstration for 100 kW power units; Regeneration technologies; Commercialization of portable systems	Commercialization autonomous power supply;

Hydrogen Storage and Purification

Joint Institute for High Temperatures, Russian Academy of Sciences

Hydrogen Storage

Institute of Problems of Chemical Physics of RAS

New nanostructured alloys and composites on the base of Al and Mg

Metal hydride storage system

	2008-2012	2013-2020	2021-2030
Alkaline FC and co- generation units (H ₂ /Air)	Prototypes FC 25 kW CG 10 kW durability 10 000 h	Demonstration, incl. renewable systems	Commercialization, 5 – 350 kW eff. >50% durability 40 000 h
PEM FC and co- generation units	Components; Prototypes 10 kW, durability 10 000 h	Demonstration 5-250 kW eff. >50% durability 20 000 h	Commercialization
High temperature FC	Experimental SOFC and MCFC 5-50 kW	Prototypes SOFC and MCFC, 300 kW Integrated with fuel processors	Demonstration up to 10 MW; System integration; Commercialization

Energy systems based on solid polymer electrolyte (PEM) fuel cells (10 kW module).

Preparation for serial manufacturing.

Russian Federal Nuclear Center – All-Russia Research Institute of Technical Physics (RFNC – VNIITF)

Solid Oxide Fuel Cell Power 2,5 kW Voltage 43,2 V

Hydrogen-air 5 kW AFC PULSAR-6 CO-GENERATOR

Hydrogen combustion technologies

	2009 2012	2012 2020	2021 2020
	2000-2012	2013-2020	2021-2030
H ₂ /O ₂ steam generators	Experimental devices 25 MW, 7 MPa, 1200 K	Prototypes and Demonstration 100 MW, 10 MPa, 1500 K	Demonstration load management system; Commercialization
High temperature steam turbines and power units	Components; Experimental systems 5 MW;	Prototypes and Demonstration 10 MW;	Commercialization 10 MW autonomous power units
Hybrid high temperature power units	Experimental H ₂ /Air - gas turbine units, 10 MW	Experimental FC - turbine units 1-10 MW, eff. 60%	Prototypes and Demonstration 10 MW

Power Units: H2/O2 steam generators

steam generator

Joint Institute for High Temperatures RAS Chemical Automatics Design Bureau

25 M

25-30 MW

1200

10

Integration of hydrogen and steam turbine technology

60

20

MPa

Water pressure,

Experimental test with 2 water pumps

Main parameters:

- Time out on the main mode of less than 10 seconds
- The specific power of 32 kW/kg.
- Promising efficiency of more than 40%.

EXPERIMENTAL HYDROGEN-OXYGEN STEAM-TURBINE POWER PLANT UP TO 5 MW ON THE TEST BENCH

Safety, codes, standards, education

National hydrogen technical regulations – under consideration

GOVERNMENTAL FUNDING

1 BLN ROUBLES

Thank you for your attention!

Federal Agency for Science and Innovation partnership@fasi.gov.ru