

Hydrogen – A competitive Energy Storage Medium to enable the large scale integration of renewable energies Seville, Spain | 15-16 November 2012

Battery Energy Storage technologies for power system

Vincenzo Antonucci

Project leader in Distributed Energy Systems of CNR Department of Energy and Transportation

Vincenzo Antonucci

The Role of Energy Storage and Benefits

Contingency Service Area Control Black-Start Generation - Conventional Commodity Storage Spinning Reserve - Frequency Regulation

Off-grid applications Dispatch Generation - Renewable **Energy Balancing**

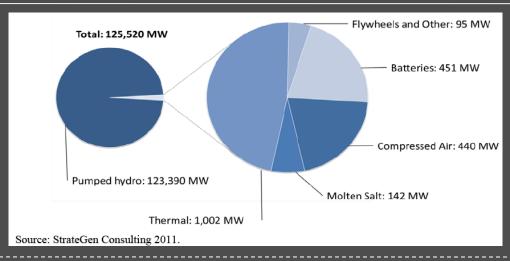
Smoothing & Ramping

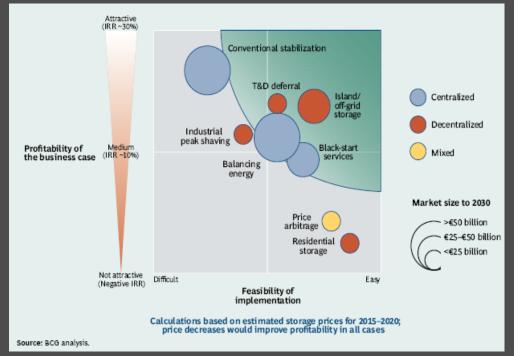
System Stability Transmission and Distribution Voltage Regulation **Asset Deferral**

Energy Management – Peak Shaving Energy Service **Power Quality Power Reliability**

- **✓** Reduce the need for additional transmission assets
- ✓ Be the preferred supplier of ancillary services
- **✓ Provide better integration** of renewables into the system
- √ Support more efficient use of existing assets
 - √ Improve the reliability of electricity supply
 - ✓ Increase the efficiency of existing power plant and transmission facilities
 - **✓** Reduce the investment required for new facilities

Vincenzo Antonucci


Market


Estimated Installed Capacity of Energy Storage in Global Grid (2011)

- ➤ Excluding pumped hydro, the other technologies cover 2129MW (about 1.7% of the global market)
- Only 451MW for Batteries

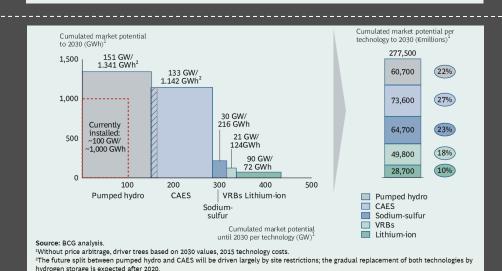
More attractive business cases in the near future

- Conventional stabilization
- Balancing Energy
- Black start services
- > Island / off grid storage

Vincenzo Antonucci

Market

Promised technologies per application in the next future


- ➤ Battery Energy Storage Technologies are expected very attractive starting from 2015
- Considering actual development High temperature batteries, Redox Flow Batteries and Lithium-Ion batteries are the most promising

Pumped Sodium-sulfur Redox-flow Lithium-ion A-CAES¹ Hydrogen Application hydro CAES batteries batteries (VRBs) batteries Price arbitrage Balancing energy installations needed to achieve minimum power Provision of black-start NA Stabilizing conventional generation Island and off-grid storage NA T&D deferral NA Industrial peak shaving NA NA NA NA Residential storage NA Attractive in 2015 Needs further cost degression Attractive today (given expected 2015 costs) and/or subsidies to be viable Source: BCG analysis A-CAES is the second generation of CAES technology. It includes a thermal storage unit to avoid thermal energy losses during compression and

decompression, thereby potentially increasing round-trip efficiency to approximately 70 percent. The technology is not yet mature and faces several

Market potential of the storage technologies

- ➤ Batteries will account for half the market in terms of power but significantly less in terms of capacity
- ➤ Batteries will represent 50 percent of cumulated market potential to 2030

Why batteries?

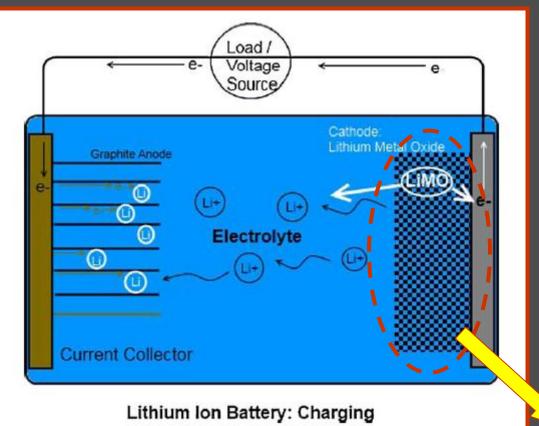
☐ Pumped Hydro needs
large scale installation with
heavy environment impact
☐ CAES and Flywheel have
reduced size respect
pumped hydro but not
respect batteries. They need
complex balance of plant.

□ Batteries show high efficiency and can be containerized and easy installed in distributed and centralized applications. They need technological development in terms of safety, operating costs and life cycle. Optimum in applications with fast interventions.

Applications and requirements

Application	Use/Duty Cycle	Application
Long Duration storage, frequent discharge	1 cycle/day X 250 days/year	Load-Levelling, source-following, arbitrage, Distribution Deferral
Long Duration storage, infrequent discharge	20 times/year	Capacity credit,
Short-duration storage, frequent discharge	4x15 minutes of cycling X 250 days/year=1000 cycles/year	Frequency or area regulation
Short-duration storage, infrequent discharge	20 times/year	Power quality, monetary carry-over

Application	Storage Support Time
Frequency Regulation	1-5 minutes
Spinning Reserve	15-20 minutes
Distribution Upgrade Deferral	1-4 hours
Demand Management	15 minutes – 1 hour
Power Quality	Seconds to 5 minutes



Most promising battery technologies

- ✓ Lithium based
- ✓ Metal Air
- ✓ Redox Flow Batteries
- ✓ Sodium based

Lithium

C. de las Casas, W. Li / Journal of Power Sources 208 (2012) 74-85

Lithium-ion Battery

Cathode: lithium metal oxide

LiMO₂↔ Li₁-xMO₂ +xLi+ +xe⁻

Anode: graphite or lithium titanate

xLi⁺ +xe⁻ +6C ↔ Li_xC₆

Electrolyte: lithium salt

e.g. LiPF₆ in organic solvent

Stable crystal structure required

Lithium

Manufacturers: SAFT, BYD, LiTec, Enersys, Oxi, etc

- High energy and power density
- Low self-discharge rate
- Light weight
- Small size
- Longer life
- Low maintenance
- Quick charging (typically 1-2 hours)
- No memory effect

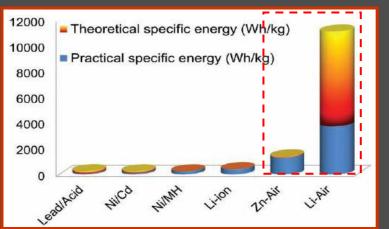
Sources: Frost & Sullivan

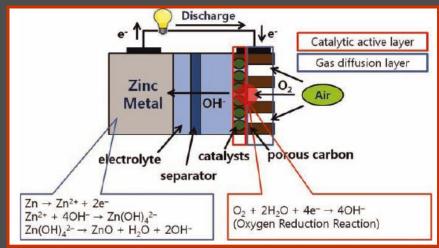
Key End-user Groups

- Military
- Medical
- Data Collection
- Heavy-duty Cordless
- Telecom and Data Communication
- Equipment
- STATIONARY APPLICATION

Stationary applications are not as volumetrically and weight constrained as portable/vehicle application:

COST AND SAFETY are needed to satisfy




Vincenzo Antonucci

Metal-Air

Metal-air batteries have garnered much attention recently as a possible alternative, due to their extremely high energy density compared to that of other rechargeable batteries as well as the low cost

Theoretical and practical energy densities of various types of rechargeable battery

Sources: Adv. Energy Mater. 2011, 1, 34-50

Zn-air (theoretical: 1084 Wh/kg)	Li-air (theoretical: 11000 Wh/kg)
Stable towards moisture, can be assembled outside of glovebox.	Not moisture-stable, increasing cost and manufacturing complexity.
Zinc metal and aqueous electrolytes are inexpensive	Lithium and non-aqueous electrolytes are costly
Technology is closer to or already in practical applications.	Still in research phase
Poor reversibility of reactions	Reversible reactions (and improving!)
Low life-cycle: dendride formation	Low life-cycle: dendride formation
Low operating potential	Highest operating potential

Vincenzo Antonucci

Metal-Air

Developers: AER Energy
Resources, Aluminum Power,
Alupower, Chem Tek, Electric
Fuel, Evionyx, Metallic Power,
Power Zinc, Zoxy Energy Systems

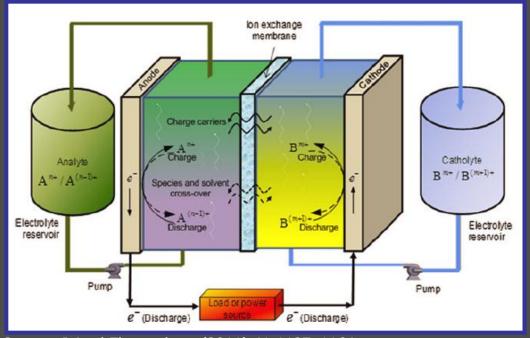
High energy density and low cost in terms of materials

Main drawback is Low cycle-life

Electrical recharge ability feature of these batteries needs to be developed

Comparison among several metal-air batteries

	ADVANTAGE	DISADVANTAGE
Zn-air	 High theoretical energy density of ~1084Wh/kg Zinc is a common, cheap, abundant material Good energy density Rely in a cheap and available material. Zinc is stable in aqueous and alkaline electrolytes without significant corrosion. Potential for low cost: ~ US \$250/kWh 	 Zinc-air system seemed very promising but despite the efforts made in the past two decades there are still no commercial systems due to low cycle life: ~500 cycles demonstrated until date. Low cycle life caused by dendrite formation in the zinc electrode. Dendrites can pierce the membrane and even reach the air cathode, forming a dangerous short circuit. In the most common embodiment employs 2 different electrolytes for the positive and negative electrodes and an expensive ion-exchange membrane is required to separate them.
Lithium- Sulfur	 High theoretical energy density: ~2600Wh kg⁻¹ High energy and power densities 350Wh kg⁻¹, 400 to 2000W kg⁻¹ depending application and energy density. Low cost potential 	 Low cycle-life. Sulfur is a poor conductor Safety issues related with metallic-lithium Lower lithium resources compared with other metals Higher lithium cost
Iron-air	 High theoretical energy density of around 1000Wh kg⁻¹ solution of KOH as the electrolyte: not membrane is required iron, a common, abundant and cheap material available worldwide iron does not form dendrites Safe and non-toxic materials 	 Hydrogen evolution in the iron electrode reduces overall efficiency Reaction rate has been traditionally limited by the air-electrode, reducing power density of the battery. Cycle life limited traditionally by the degradation of the air electrode. Slight self-discharge of the battery caused by corrosion of the iron-anode.



Redox Flow Batteries

Manufacturers: Prudent Energy, ZBB, EN Storage

The redox flow cell or battery is an electrochemical system that stores energy in two solutions containing different redox couples (electroactive species)

Source: J Appl Electrochem (2011) 41:1137-1164

Iron/chromium

Fe²⁺
$$\stackrel{\longleftarrow}{\mathsf{F}}$$
 Fe³⁺ + e⁻ E= 0,77V vs RHE

$$Cr^{2+}$$
 Cr^{3+} + e- E= - 0,41V vs RHE

Bromine/polysulphide

$$3Br - Br_3^- + 2 e^- E = 1.09V vs RHE$$

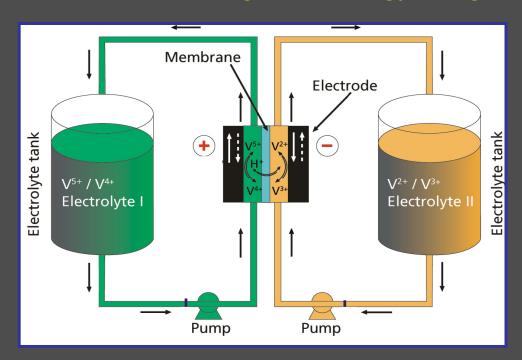
$$2S_2^2 + 2e^- E = -265V \text{ vs RHE}$$

Zinc/bromine

$$3Br^{-1}$$
 $Br^{3-} + 2e^{-}$ E= 1.09V vs RHE

Zn
$$\frac{1}{2}$$
 Zn²⁺ + 2e⁻ E= - 0.76V vs RHE

Zinc/cerium


Zn
$$\sqrt{2}$$
 Zn²⁺ + 2e⁻ E= - 0.76V vs RHE

Vincenzo Antonucci

Redox Flow Batteries Vanadium

The electrolyte containing the active vanadium redox couples in sulfuric acid solution is circulated in two independent loops through the electrode compartments divided by a microporous separator or an ion conducting membrane

The all-vanadium battery is the most widely commercialised RFB used for large-scale energy storage

$$VO_2^+ + 2H^+ + e^- \leftrightarrow VO^{2+} + H_2O$$

$$V^{2+} \leftrightarrow V^{3+} + e^{-}$$

$$E = +1.00 V$$

$$E = -0.26 V$$

Cell reaction: $V^{2+} + VO_2^+ + 2H^+ \leftrightarrow VO^{2+} + V^{3+} + H_2O$ E = 1.26 V

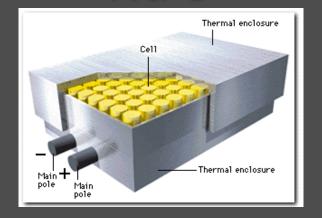
Redox Flow Batteries

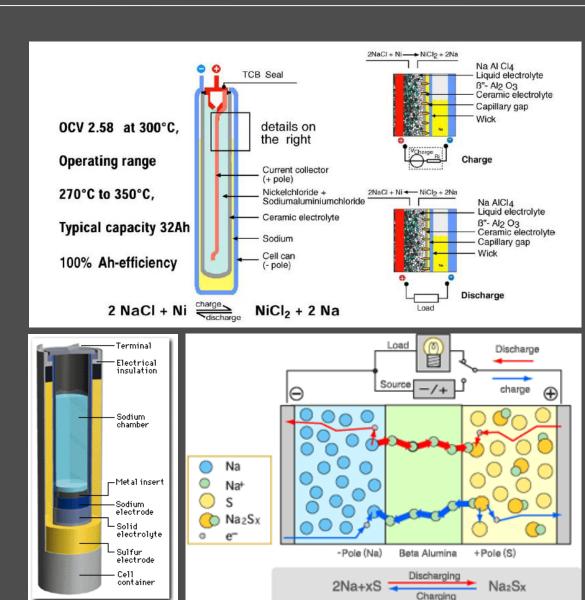
Advantages:

Vanadium

- ✓ Power is determined by the number of cells in the stack and the size of the electrodes while the energy capacity storage is determined by the concentration and volume of the electrolyte
 - ✓ High efficiency
 - ✓ Long Cycle Lifetime in Deep Charge/Discharge
 - ✓ Easy Increase of Capacity
 - ✓ Normal Temperature Operation
 - Can be both electrically recharged and mechanically refueled
 - ✓ Low cross-contamination of the two half-cell electrolytes

Drawbacks:


- > Low energy density 20-30 Wh L⁻¹
- ➤ Critical aspect of the technology is concerning with the electrocatalytic activity and the reversibility of the redox reaction at the positive electrode [VO]²⁺/[VO₂]⁺
 - > Materials costs represent a fundamental driver of applicability of these systems


Vincenzo Antonucci

Sodium NaNiCl

Na-S

Vincenzo Antonucci

Sodium

High Temperature Batteries:

~ 270-350 °C

Na-S Battery

NGK Insulator (Japan)

NaNiCL

ZEBRA Battery

FIAMM (Italy), GE (USA)

Manufacturers: NGK Insulator, FIAMM Sonick, GE

	ADVANTAGE	DISADVANTAGE		
NaS	 High energy density (110 Wh/kg) High eff iciency of charge/discharge (> 90 %) Long cycle life no self discharge Low cost materials No gas emission Good Safety 	 Current collector corrosion due to the high operation temperatures Highly corrosive nature of the sodium polysulfides the system must be protected from moisture Dendritic-sodium growth 		
ZEBRA	High energy density (90 Wh/kg)Long cycle lifeno self discharge	High costsThermal management		

Vincenzo Antonucci

Performance and Costs Analysis

Source: Kyle Bradbury

Technology	Li-ion	Na-S	ZEBRA	VRB	Zn-Br
Roundtrip Efficiency [%]	85-98	70-90	85-90	60-85	60-75
Self-discharge [% Energy/day]	0.1-0.3	0.05-20	15	0.2	0.24
Cycle Lifetime [cycles]	1k-10k	2.5k	2.5k	12k-14k	2k
Expected Lifetime [Years]	5-15	5-15	10-14	5-15	5-10
Specific Energy [W/kg]	75-200	150-240	100-120	-	-
Specific Power [W/kg]	150-315	150-230	150-200	16-33	30-60
Energy Density [Wh/L]	200-500	150-250	150-180	-	-

Technology	Li-ion	NaS	ZEBRA	VRB	ZnBr
Power Cost [\$/kW]	175-4000	150-3000	150-300	175-1500	175-2500
Energy Cost [\$/kWh]	500-2500	250-500	100-200	150-1000	150-1000
BoP Cost [\$/kWh]	120-600	120-600	120-600	120-610	120-600
O&M Fixed Cost [\$/kW-y]	12-30	23-61	23-61	24-65	15-47

Comparative Analysis

Centralized Storage

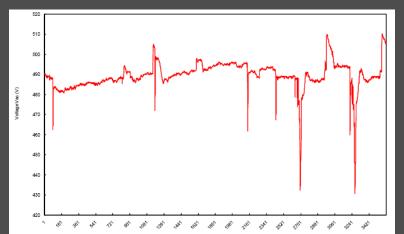
	Energy Density	Temperature/ Safety	Operating Cost	Efficiency	Lifecycle	Capital Cost	Development Stage	Total
Pumped Hydro		•					Most widely used form of storage	21
Flow Batteries		•			•		Commercialised but only very few projects implemented in Europe	15
Lithium-ion							Research stage	16
CAES		•	•		•	•	Commercialised. 2 plants in operation globally – Germany and US	19
Thermal Storage							Molten salt widely used for CSP plants	20
Lead Acid	\bigcirc						Widely used	14
Sodium Sulfur					•		165 MW installed capacity in ₹ Japan. No projects as yet in ¿ Europe	22
Sodium Nickel Chloride							Been in existence for over 20 years. FIAMM only company in Europe manufacturing these batteries	17
Very High Attractiveness		gh tractiveness = 4	Moderate Attractive	e eness = 3	Low Attractiveness		y Low ractiveness = 1	st & Sullivan

String 1

432 V O/C 150 amp nom. Module

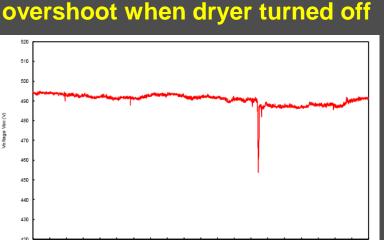
150 amp nom. 300 amp cont.

432 V O/C 300 amp nom.


Vincenzo Antonucci

Pilot Plant

ZBB - Akron Grain Drying Facility
400 kWh Zinc/Bromine Battery Configuration
App: load leveling

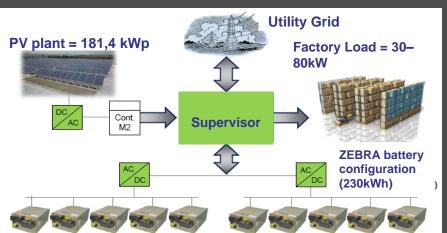

Energy Storage System responded to system needs

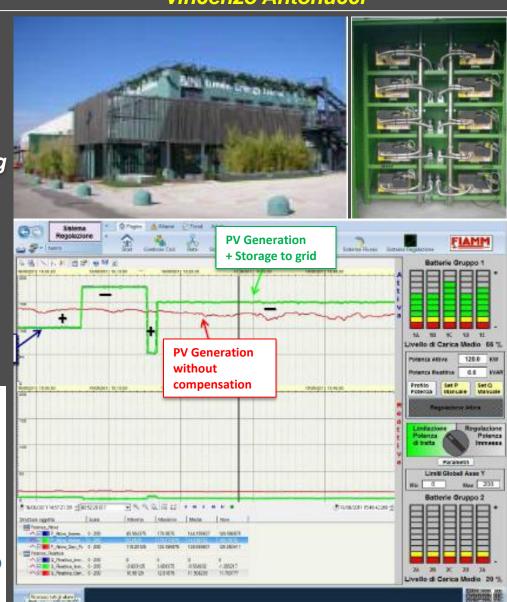
- √ Grain dryer caused 850 kVA spike
- √Spike was higher than unit capability
- √ Energy storage system reduced voltage drop
- ✓ Energy storage system eliminated voltage overshoot when dryer turned off

Line voltage without compensation

Line voltage with compensation

The same was the same




Vincenzo Antonucci

Pilot Plant

FIAMM Green Energy Island
230 kWh ZEBRA Battery Configuration
App: Generation Management-Load shifting

- √ Power regulation released to grid
- ✓ Peak shaving & load shifting
- √ Tariff optimization (sell & buy)
- √ Back-up service

Vincenzo Antonucci

Pilot Plant

NGK Insulator
App: AEP Distribution Substation with
Sodium-Sulfur Unit

NGK Insulator

App: Energy balancing- Peak shaving of wind park in Rokkasho

Stored Energy = 34MWh Wind Park = 51MW

Demonstration plants in Japan, USA and Asia.

NAS are produced in fundamental unit of 1 MW (6MWh) for plants typically with a size in the range between 2-10MW.

Industrial plans were stopped due to a big fire occurred on 21 september 2011 in Tsukuba plant of the Mitsubishi Material Corporation in Japan.

Conclusions

- ✓ Battery Energy Storage Technologies are expected penetrate significantly the global market of energy storage to 2030 (50% of the whole power foreseen)
- ✓ The use of batteries in grid applications represent a good choice in terms of cost saving respect building new infrastructures, and in terms of guarantying security and stability to electrical grid
- √The most promising batteries are Li-Ion, VRB, Sodium-sulfur, ZEBRA and Zinc-bromide
- ✓ Several demonstration projects have already shown the capability of batteries to respect requirements and functionality
- ✓ Advances have to be done in terms of fast charge, life cycle, security of such technology, and reducing costs

Hydrogen – A competitive Energy Storage Medium to enable the large scale integration of renewable energies Seville, Spain | 15-16 November 2012

Battery Energy Storage technologies for power system

vincenzo.antonucci@itae.cnr.it

Project leader in Distributed Energy Systems of CNR Department of Energy and Transportation

Hydrogen – A competitive Energy Storage Medium to enable the large scale integration of renewable energies Seville, Spain | 15-16 November 2012

Battery Energy Storage technologies for power system

APPENDIX

Project leader in Distributed Energy Systems of CNR Department of Energy and Transportation

Hydrogen – A competitive Energy Storage Medium to enable the large scale integration of renewable energies Seville, Spain | 15-16 November 2012

Lithium

Lithium-Ion Energy storage: Chemistry

Cathode materials Energy density / Wh kg⁻¹ Voltage / V

Low cost materialsEnvironmental friendly	LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ LiFePO ₄	145-165 100-140	3.65 3.2
transition metal ions	LiMn ₂ O ₄	90-120	3.8

Electrode performance depends on the electrode microstructure and morphology. Lithium ions intercalation and deintercalation occur along specific crystallographic planes and directions, so higher crystallinity improves electrode performance.

Hydrogen – A competitive Energy Storage Medium to enable the large scale integration of renewable energies Seville, Spain | 15-16 November 2012

	`	•	
			ım
LI	LII		

Lithium	Anode materials	Theoretical capacity / mAh g ⁻¹
	Graphite	372
	LiTi ₅ O ₁₂	175
	Li ₂₂ Sn ₅	994
<u>Metal and alloy</u>	Li ₃ Sb	536
based anodes	Al ₄ Li ₉	2234
	Li ₂₁ Si ₅	4000

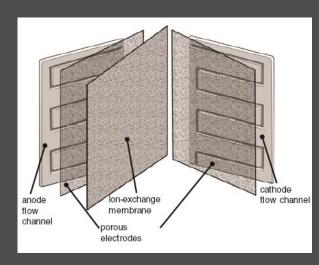
Characteristics of Anode Materials

Large reversible capacity

- Small irreversible capacity
- Desirable charge profile
- Desirable kinetics (rate capability)
- Long cycle and calendar life
- Ease of processing
- Safety
- Compatibility with electrolyte and binder systems
- Low cost

Much higher storage capacity but large volumetric expansion

(Pulverization Process)



Redox Flow Batteries

Vanadium

Commercial used materials

- ➤ **Electrodes:** High surface area, high reaction rates, low polarization are required to ensure adequate cell performance. e.g. Carbonaceous materials, carbon felt, graphite felt, carbon paper, carbon cloth, graphite powder
- Cation Exchange Membrane: good ion conductivity, high ionic, good chemical stability e.g. Nafion 117, Gore, Daramic, Asahi Selemion CMV
- ➤ Electrolyte solution: proper vanadium concentration 1-3 M VOSO₄ · nH₂O in 1-4 M H₂SO₄
- ➤ Operative temperature: from room temperature up to 50 °C due to V⁵⁺ precipitation

Source: J Appl Electrochem (2011) 41:1137–1164